
BuildBot

This is the BuildBot manual.

Copyright (C) 2005, 2006, 2009, 2010 Brian Warner

Copying and distribution of this file, with or without modification, are permitted in any
medium without royalty provided the copyright notice and this notice are preserved.

i

Table of Contents

1 Introduction . 1
1.1 History and Philosophy . 1
1.2 System Architecture . 2

1.2.1 BuildSlave Connections . 3
1.2.2 Buildmaster Architecture . 4
1.2.3 Status Delivery Architecture . 6

1.3 Control Flow . 6

2 Installation . 8
2.1 Requirements . 8
2.2 Installing the code . 8
2.3 Creating a buildmaster . 9
2.4 Upgrading an Existing Buildmaster . 10
2.5 Creating a buildslave . 10

2.5.1 Buildslave Options . 12
2.6 Launching the daemons . 13
2.7 Logfiles . 14
2.8 Shutdown . 14
2.9 Maintenance . 15
2.10 Troubleshooting. 15

2.10.1 Starting the buildslave . 15
2.10.2 Connecting to the buildmaster . 15
2.10.3 Forcing Builds . 16

3 Concepts . 17
3.1 Version Control Systems . 17

3.1.1 Generalizing VC Systems . 17
3.1.2 Source Tree Specifications . 18
3.1.3 How Different VC Systems Specify Sources 19
3.1.4 Attributes of Changes . 20

3.2 Schedulers . 22
3.3 BuildSet . 23
3.4 BuildRequest . 24
3.5 Builder . 24
3.6 Users . 25

3.6.1 Doing Things With Users . 25
3.6.2 Email Addresses . 26
3.6.3 IRC Nicknames . 27
3.6.4 Live Status Clients . 27

3.7 Build Properties . 27

ii

4 Configuration . 29
4.1 Config File Format . 29
4.2 Loading the Config File . 30
4.3 Testing the Config File . 30
4.4 Defining the Project . 31
4.5 Change Sources and Schedulers . 32

4.5.1 Scheduler Scheduler . 33
4.5.2 AnyBranchScheduler . 34
4.5.3 Dependent Scheduler . 34
4.5.4 Periodic Scheduler . 35
4.5.5 Nightly Scheduler . 35
4.5.6 Try Schedulers . 37
4.5.7 Triggerable Scheduler . 37

4.6 Merging BuildRequests . 38
4.7 Prioritizing Builders . 39
4.8 Setting the slaveport . 39
4.9 Buildslave Specifiers . 39

4.9.1 When Buildslaves Go Missing . 40
4.10 On-Demand ("Latent") Buildslaves . 41

4.10.1 Amazon Web Services Elastic Compute Cloud ("AWS
EC2") . 41

4.10.1.1 Get an AWS EC2 Account . 41
4.10.1.2 Create an AMI . 42
4.10.1.3 Configure the Master with an EC2LatentBuildSlave

. 42
4.10.2 Dangers with Latent Buildslaves . 44
4.10.3 Writing New Latent Buildslaves . 45

4.11 Defining Global Properties . 45
4.12 Defining Builders . 45
4.13 Defining Status Targets . 47
4.14 Limiting Memory and Disk Usage . 47
4.15 Debug options . 48

5 Getting Source Code Changes 50
5.1 Change Sources . 50
5.2 Choosing ChangeSources . 52
5.3 CVSToys - PBService . 52
5.4 Mail-parsing ChangeSources . 53

5.4.1 Subscribing the Buildmaster . 53
5.4.2 Using Maildirs . 54
5.4.3 Parsing Email Change Messages . 54

5.4.3.1 FCMaildirSource . 55
5.4.3.2 SyncmailMaildirSource . 55
5.4.3.3 BonsaiMaildirSource . 56
5.4.3.4 SVNCommitEmailMaildirSource . 56
5.4.3.5 BzrLaunchpadEmailMaildirSource 56

5.5 PBChangeSource . 56
5.6 P4Source . 57

iii

5.7 BonsaiPoller . 58
5.8 SVNPoller . 58
5.9 MercurialHook . 62
5.10 Bzr Hook . 64
5.11 Bzr Poller . 65

6 Build Process . 66
6.1 Build Steps . 66

6.1.1 Common Parameters . 67
6.1.2 Using Build Properties . 68
6.1.3 Source Checkout . 70

6.1.3.1 CVS . 72
6.1.3.2 SVN . 72
6.1.3.3 Darcs . 75
6.1.3.4 Mercurial . 75
6.1.3.5 Arch . 76
6.1.3.6 Bazaar . 76
6.1.3.7 Bzr . 76
6.1.3.8 P4 . 77
6.1.3.9 Git . 77
6.1.3.10 Monotone . 78

6.1.4 ShellCommand . 78
6.1.5 Simple ShellCommand Subclasses . 80

6.1.5.1 Configure . 81
6.1.5.2 Compile . 81
6.1.5.3 Test . 82
6.1.5.4 TreeSize . 82
6.1.5.5 PerlModuleTest . 82

6.1.6 Testing with mysql-test-run . 82
6.1.6.1 SetProperty . 84
6.1.6.2 SubunitShellCommand . 84

6.1.7 Python BuildSteps . 84
6.1.7.1 BuildEPYDoc . 84
6.1.7.2 PyFlakes . 85
6.1.7.3 PyLint . 85

6.1.8 Transferring Files . 85
6.1.9 Steps That Run on the Master . 87
6.1.10 Triggering Schedulers . 87
6.1.11 Writing New BuildSteps . 88

6.1.11.1 Writing BuildStep Constructors . 88
6.1.11.2 BuildStep LogFiles . 89
6.1.11.3 Reading Logfiles . 90
6.1.11.4 Adding LogObservers . 91
6.1.11.5 BuildStep URLs . 95

6.2 Interlocks . 96
6.3 Build Factories . 99

6.3.1 BuildStep Objects . 99
6.3.2 BuildFactory . 99

iv

6.3.2.1 BuildFactory Attributes . 101
6.3.2.2 Quick builds . 101

6.3.3 Process-Specific build factories . 101
6.3.3.1 GNUAutoconf . 101
6.3.3.2 CPAN . 102
6.3.3.3 Python distutils . 103
6.3.3.4 Python/Twisted/trial projects . 103

7 Status Delivery . 105
7.1 WebStatus . 105

7.1.1 WebStatus Configuration Parameters . 106
7.1.2 Enabling the "Force Build" Button . 107
7.1.3 Buildbot Web Resources . 107
7.1.4 XMLRPC server . 111
7.1.5 HTML Waterfall . 111

7.2 MailNotifier . 112
7.3 IRC Bot . 117
7.4 PBListener . 119
7.5 Writing New Status Plugins . 119

8 Command-line tool . 120
8.1 Administrator Tools . 120
8.2 Developer Tools . 120

8.2.1 statuslog . 121
8.2.2 statusgui . 121
8.2.3 try . 121

8.2.3.1 try –diff . 126
8.3 Other Tools . 127

8.3.1 sendchange. 127
8.3.2 debugclient . 128

8.4 .buildbot config directory . 129

9 Resources . 131

Developer’s Appendix . 132

Index of Useful Classes . 133

Index of master.cfg keys . 135

Index . 136

Chapter 1: Introduction 1

1 Introduction

The BuildBot is a system to automate the compile/test cycle required by most software
projects to validate code changes. By automatically rebuilding and testing the tree each time
something has changed, build problems are pinpointed quickly, before other developers are
inconvenienced by the failure. The guilty developer can be identified and harassed without
human intervention. By running the builds on a variety of platforms, developers who do
not have the facilities to test their changes everywhere before checkin will at least know
shortly afterwards whether they have broken the build or not. Warning counts, lint checks,
image size, compile time, and other build parameters can be tracked over time, are more
visible, and are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to run tests or code-
quality checks that are too annoying or pedantic for any human to waste their time with.
Developers get immediate (and potentially public) feedback about their changes, encourag-
ing them to be more careful about testing before checkin.

Features:

• run builds on a variety of slave platforms

• arbitrary build process: handles projects using C, Python, whatever

• minimal host requirements: python and Twisted

• slaves can be behind a firewall if they can still do checkout

• status delivery through web page, email, IRC, other protocols

• track builds in progress, provide estimated completion time

• flexible configuration by subclassing generic build process classes

• debug tools to force a new build, submit fake Changes, query slave status

• released under the GPL

1.1 History and Philosophy

The Buildbot was inspired by a similar project built for a development team writing a
cross-platform embedded system. The various components of the project were supposed to
compile and run on several flavors of unix (linux, solaris, BSD), but individual developers
had their own preferences and tended to stick to a single platform. From time to time,
incompatibilities would sneak in (some unix platforms want to use string.h, some prefer
strings.h), and then the tree would compile for some developers but not others. The build-
bot was written to automate the human process of walking into the office, updating a tree,
compiling (and discovering the breakage), finding the developer at fault, and complaining
to them about the problem they had introduced. With multiple platforms it was difficult
for developers to do the right thing (compile their potential change on all platforms); the
buildbot offered a way to help.

Another problem was when programmers would change the behavior of a library without
warning its users, or change internal aspects that other code was (unfortunately) depending
upon. Adding unit tests to the codebase helps here: if an application’s unit tests pass
despite changes in the libraries it uses, you can have more confidence that the library
changes haven’t broken anything. Many developers complained that the unit tests were

Chapter 1: Introduction 2

inconvenient or took too long to run: having the buildbot run them reduces the developer’s
workload to a minimum.

In general, having more visibility into the project is always good, and automation makes
it easier for developers to do the right thing. When everyone can see the status of the
project, developers are encouraged to keep the tree in good working order. Unit tests that
aren’t run on a regular basis tend to suffer from bitrot just like code does: exercising them
on a regular basis helps to keep them functioning and useful.

The current version of the Buildbot is additionally targeted at distributed free-software
projects, where resources and platforms are only available when provided by interested
volunteers. The buildslaves are designed to require an absolute minimum of configuration,
reducing the effort a potential volunteer needs to expend to be able to contribute a new test
environment to the project. The goal is for anyone who wishes that a given project would
run on their favorite platform should be able to offer that project a buildslave, running on
that platform, where they can verify that their portability code works, and keeps working.

1.2 System Architecture

The Buildbot consists of a single buildmaster and one or more buildslaves, connected in
a star topology. The buildmaster makes all decisions about what, when, and how to build.
It sends commands to be run on the build slaves, which simply execute the commands and
return the results. (certain steps involve more local decision making, where the overhead
of sending a lot of commands back and forth would be inappropriate, but in general the
buildmaster is responsible for everything).

The buildmaster is usually fed Changes by some sort of version control system (see
Section 5.1 [Change Sources], page 50), which may cause builds to be run. As the builds
are performed, various status messages are produced, which are then sent to any registered
Status Targets (see Chapter 7 [Status Delivery], page 105).

BuildMaster

Build

Slave

C
om

m
ands

CVS Changes

Browser

Status Client

IRC

email

Build Status

R
es

ul
ts

SVN

Darcs
.. etc

Build

Slave

Build

Slave

Chapter 1: Introduction 3

The buildmaster is configured and maintained by the “buildmaster admin”, who is gen-
erally the project team member responsible for build process issues. Each buildslave is
maintained by a “buildslave admin”, who do not need to be quite as involved. Generally
slaves are run by anyone who has an interest in seeing the project work well on their favorite
platform.

1.2.1 BuildSlave Connections

The buildslaves are typically run on a variety of separate machines, at least one per plat-
form of interest. These machines connect to the buildmaster over a TCP connection to a
publically-visible port. As a result, the buildslaves can live behind a NAT box or similar
firewalls, as long as they can get to buildmaster. The TCP connections are initiated by
the buildslave and accepted by the buildmaster, but commands and results travel both
ways within this connection. The buildmaster is always in charge, so all commands travel
exclusively from the buildmaster to the buildslave.

To perform builds, the buildslaves must typically obtain source code from a
CVS/SVN/etc repository. Therefore they must also be able to reach the repository. The
buildmaster provides instructions for performing builds, but does not provide the source
code itself.

BuildMaster

Build

Slave

CVS Changes

SVN

Darcs
.. etc

Repository

NAT

T
C

P

Chapter 1: Introduction 4

1.2.2 Buildmaster Architecture

The Buildmaster consists of several pieces:

Change
Source

Change
Source

Scheduler Scheduler

BuilderBuilderBuilder

build
request

build
requestbuild

request

Change
ChangeChange

• Change Sources, which create a Change object each time something is modified in the
VC repository. Most ChangeSources listen for messages from a hook script of some
sort. Some sources actively poll the repository on a regular basis. All Changes are fed
to the Schedulers.

• Schedulers, which decide when builds should be performed. They collect Changes into
BuildRequests, which are then queued for delivery to Builders until a buildslave is
available.

• Builders, which control exactly how each build is performed (with a series of BuildSteps,
configured in a BuildFactory). Each Build is run on a single buildslave.

• Status plugins, which deliver information about the build results through protocols like
HTTP, mail, and IRC.

Chapter 1: Introduction 5

Builder

Builder

build
request

build
request

build
request

build

BuildSlave

BuildSlave

SlaveBuilder

SlaveBuilder

SlaveBuilderSlaveBuilder

build

buildbuild

Builder

build

Each Builder is configured with a list of BuildSlaves that it will use for its builds. These
buildslaves are expected to behave identically: the only reason to use multiple BuildSlaves
for a single Builder is to provide a measure of load-balancing.

Within a single BuildSlave, each Builder creates its own SlaveBuilder instance. These
SlaveBuilders operate independently from each other. Each gets its own base directory
to work in. It is quite common to have many Builders sharing the same buildslave. For
example, there might be two buildslaves: one for i386, and a second for PowerPC. There
may then be a pair of Builders that do a full compile/test run, one for each architecture, and
a lone Builder that creates snapshot source tarballs if the full builders complete successfully.
The full builders would each run on a single buildslave, whereas the tarball creation step
might run on either buildslave (since the platform doesn’t matter when creating source
tarballs). In this case, the mapping would look like:

Builder(full-i386) -> BuildSlaves(slave-i386)

Builder(full-ppc) -> BuildSlaves(slave-ppc)

Builder(source-tarball) -> BuildSlaves(slave-i386, slave-ppc)

and each BuildSlave would have two SlaveBuilders inside it, one for a full builder, and a
second for the source-tarball builder.

Once a SlaveBuilder is available, the Builder pulls one or more BuildRequests off its
incoming queue. (It may pull more than one if it determines that it can merge the requests
together; for example, there may be multiple requests to build the current HEAD revision).
These requests are merged into a single Build instance, which includes the SourceStamp
that describes what exact version of the source code should be used for the build. The
Build is then randomly assigned to a free SlaveBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized, see Section 4.6 [Merg-
ing BuildRequests], page 38.

Chapter 1: Introduction 6

1.2.3 Status Delivery Architecture

The buildmaster maintains a central Status object, to which various status plugins are
connected. Through this Status object, a full hierarchy of build status objects can be
obtained.

Builder

build
request

build

Status

Status
Builder

Status
Builder

Status
Build

Status
Step

Status
Step

File
Log

File
Log

Waterfall

IRC

MailNotifier

Web
Browser

IRC
Server

SMTP

HTTP

Status
Plugins

Build

Slave

The configuration file controls which status plugins are active. Each status plugin gets
a reference to the top-level Status object. From there they can request information on
each Builder, Build, Step, and LogFile. This query-on-demand interface is used by the
html.Waterfall plugin to create the main status page each time a web browser hits the main
URL.

The status plugins can also subscribe to hear about new Builds as they occur: this is
used by the MailNotifier to create new email messages for each recently-completed Build.

The Status object records the status of old builds on disk in the buildmaster’s base
directory. This allows it to return information about historical builds.

There are also status objects that correspond to Schedulers and BuildSlaves. These allow
status plugins to report information about upcoming builds, and the online/offline status
of each buildslave.

1.3 Control Flow

A day in the life of the buildbot:

• A developer commits some source code changes to the repository. A hook script or
commit trigger of some sort sends information about this change to the buildmaster
through one of its configured Change Sources. This notification might arrive via email,
or over a network connection (either initiated by the buildmaster as it “subscribes” to
changes, or by the commit trigger as it pushes Changes towards the buildmaster). The

Chapter 1: Introduction 7

Change contains information about who made the change, what files were modified,
which revision contains the change, and any checkin comments.

• The buildmaster distributes this change to all of its configured Schedulers. Any “im-
portant” changes cause the “tree-stable-timer” to be started, and the Change is added
to a list of those that will go into a new Build. When the timer expires, a Build is
started on each of a set of configured Builders, all compiling/testing the same source
code. Unless configured otherwise, all Builds run in parallel on the various buildslaves.

• The Build consists of a series of Steps. Each Step causes some number of commands
to be invoked on the remote buildslave associated with that Builder. The first step
is almost always to perform a checkout of the appropriate revision from the same VC
system that produced the Change. The rest generally perform a compile and run unit
tests. As each Step runs, the buildslave reports back command output and return
status to the buildmaster.

• As the Build runs, status messages like “Build Started”, “Step Started”, “Build Fin-
ished”, etc, are published to a collection of Status Targets. One of these targets is
usually the HTML “Waterfall” display, which shows a chronological list of events, and
summarizes the results of the most recent build at the top of each column. Developers
can periodically check this page to see how their changes have fared. If they see red,
they know that they’ve made a mistake and need to fix it. If they see green, they know
that they’ve done their duty and don’t need to worry about their change breaking
anything.

• If a MailNotifier status target is active, the completion of a build will cause email
to be sent to any developers whose Changes were incorporated into this Build. The
MailNotifier can be configured to only send mail upon failing builds, or for builds which
have just transitioned from passing to failing. Other status targets can provide similar
real-time notification via different communication channels, like IRC.

Chapter 2: Installation 8

2 Installation

2.1 Requirements

At a bare minimum, you’ll need the following (for both the buildmaster and a buildslave):

• Python: http://www.python.org

Buildbot requires python-2.3 or later, and is primarily developed against python-2.4.
It is also tested against python-2.5 .

• Twisted: http://twistedmatrix.com

Both the buildmaster and the buildslaves require Twisted-2.0.x or later. It has been
tested against all releases of Twisted up to Twisted-2.5.0 (the most recent as of this
writing). As always, the most recent version is recommended.

Twisted is delivered as a collection of subpackages. You’ll need at least "Twisted"
(the core package), and you’ll also want TwistedMail, TwistedWeb, and TwistedWords
(for sending email, serving a web status page, and delivering build status via IRC,
respectively). You might also want TwistedConch (for the encrypted Manhole debug
port). Note that Twisted requires ZopeInterface to be installed as well.

Certain other packages may be useful on the system running the buildmaster:

• CVSToys: http://purl.net/net/CVSToys

If your buildmaster uses FreshCVSSource to receive change notification from a cvstoys
daemon, it will require CVSToys be installed (tested with CVSToys-1.0.10). If the it
doesn’t use that source (i.e. if you only use a mail-parsing change source, or the SVN
notification script), you will not need CVSToys.

And of course, your project’s build process will impose additional requirements on the
buildslaves. These hosts must have all the tools necessary to compile and test your project’s
source code.

2.2 Installing the code

The Buildbot is installed using the standard python distutils module. After unpacking
the tarball, the process is:

python setup.py build

python setup.py install

where the install step may need to be done as root. This will put the bulk of the
code in somewhere like /usr/lib/python2.3/site-packages/buildbot . It will also install the
buildbot command-line tool in /usr/bin/buildbot.

To test this, shift to a different directory (like /tmp), and run:

buildbot --version

If it shows you the versions of Buildbot and Twisted, the install went ok. If it says no

such command or it gets an ImportError when it tries to load the libaries, then something
went wrong. pydoc buildbot is another useful diagnostic tool.

Windows users will find these files in other places. You will need to make sure that
python can find the libraries, and will probably find it convenient to have buildbot on
your PATH.

Chapter 2: Installation 9

If you wish, you can run the buildbot unit test suite like this:

PYTHONPATH=. trial buildbot.test

This should run up to 192 tests, depending upon what VC tools you have installed. On
my desktop machine it takes about five minutes to complete. Nothing should fail, a few
might be skipped. If any of the tests fail, you should stop and investigate the cause before
continuing the installation process, as it will probably be easier to track down the bug early.

If you cannot or do not wish to install the buildbot into a site-wide location like ‘/usr’
or ‘/usr/local’, you can also install it into the account’s home directory. Do the install
command like this:

python setup.py install --home=~

That will populate ‘~/lib/python’ and create ‘~/bin/buildbot’. Make sure this lib
directory is on your PYTHONPATH.

2.3 Creating a buildmaster

As you learned earlier (see Section 1.2 [System Architecture], page 2), the buildmaster runs
on a central host (usually one that is publically visible, so everybody can check on the
status of the project), and controls all aspects of the buildbot system. Let us call this host
buildbot.example.org.

You may wish to create a separate user account for the buildmaster, perhaps named
buildmaster. This can help keep your personal configuration distinct from that of the
buildmaster and is useful if you have to use a mail-based notification system (see Section 5.1
[Change Sources], page 50). However, the Buildbot will work just fine with your regular
user account.

You need to choose a directory for the buildmaster, called the basedir. This directory
will be owned by the buildmaster, which will use configuration files therein, and create status
files as it runs. ‘~/Buildbot’ is a likely value. If you run multiple buildmasters in the same
account, or if you run both masters and slaves, you may want a more distinctive name like
‘~/Buildbot/master/gnomovision’ or ‘~/Buildmasters/fooproject’. If you are using a
separate user account, this might just be ‘~buildmaster/masters/fooproject’.

Once you’ve picked a directory, use the buildbot create-master command to create
the directory and populate it with startup files:

buildbot create-master basedir

You will need to create a configuration file (see Chapter 4 [Configuration], page 29)
before starting the buildmaster. Most of the rest of this manual is dedicated to explain-
ing how to do this. A sample configuration file is placed in the working directory, named
‘master.cfg.sample’, which can be copied to ‘master.cfg’ and edited to suit your pur-
poses.

(Internal details: This command creates a file named ‘buildbot.tac’ that contains all
the state necessary to create the buildmaster. Twisted has a tool called twistd which can
use this .tac file to create and launch a buildmaster instance. twistd takes care of logging
and daemonization (running the program in the background). ‘/usr/bin/buildbot’ is a
front end which runs twistd for you.)

Chapter 2: Installation 10

In addition to ‘buildbot.tac’, a small ‘Makefile.sample’ is installed. This can be
used as the basis for customized daemon startup, See Section 2.6 [Launching the daemons],
page 13.

2.4 Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you have buildmasters
that were created using an older version, you’ll need to upgrade these buildmasters before
you can use them. The upgrade process adds and modifies files in the buildmaster’s base
directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your ‘master.cfg’ file for incompatibilities (by loading
it and printing any errors or deprecation warnings that occur). Each buildbot release
tries to be compatible with configurations that worked cleanly (i.e. without deprecation
warnings) on the previous release: any functions or classes that are to be removed will first
be deprecated in a release, to give users a chance to start using their replacement.

The 0.7.6 release introduced the ‘public_html/’ directory, which contains ‘index.html’
and other files served by the WebStatus and Waterfall status displays. The upgrade-

master command will create these files if they do not already exist. It will not modify
existing copies, but it will write a new copy in e.g. ‘index.html.new’ if the new version
differs from the version that already exists.

The upgrade-master command is idempotent. It is safe to run it multiple times. After
each upgrade of the buildbot code, you should use upgrade-master on all your buildmasters.

2.5 Creating a buildslave

Typically, you will be adding a buildslave to an existing buildmaster, to provide additional
architecture coverage. The buildbot administrator will give you several pieces of information
necessary to connect to the buildmaster. You should also be somewhat familiar with the
project being tested, so you can troubleshoot build problems locally.

The buildbot exists to make sure that the project’s stated “how to build it” process
actually works. To this end, the buildslave should run in an environment just like that
of your regular developers. Typically the project build process is documented somewhere
(‘README’, ‘INSTALL’, etc), in a document that should mention all library dependencies and
contain a basic set of build instructions. This document will be useful as you configure the
host and account in which the buildslave runs.

Here’s a good checklist for setting up a buildslave:

1. Set up the account

It is recommended (although not mandatory) to set up a separate user account for
the buildslave. This account is frequently named buildbot or buildslave. This
serves to isolate your personal working environment from that of the slave’s, and helps
to minimize the security threat posed by letting possibly-unknown contributors run
arbitrary code on your system. The account should have a minimum of fancy init
scripts.

Chapter 2: Installation 11

2. Install the buildbot code

Follow the instructions given earlier (see Section 2.2 [Installing the code], page 8). If
you use a separate buildslave account, and you didn’t install the buildbot code to a
shared location, then you will need to install it with --home=~ for each account that
needs it.

3. Set up the host

Make sure the host can actually reach the buildmaster. Usually the buildmaster is
running a status webserver on the same machine, so simply point your web browser
at it and see if you can get there. Install whatever additional packages or libraries
the project’s INSTALL document advises. (or not: if your buildslave is supposed to
make sure that building without optional libraries still works, then don’t install those
libraries).

Again, these libraries don’t necessarily have to be installed to a site-wide shared loca-
tion, but they must be available to your build process. Accomplishing this is usually
very specific to the build process, so installing them to ‘/usr’ or ‘/usr/local’ is usually
the best approach.

4. Test the build process

Follow the instructions in the INSTALL document, in the buildslave’s account. Perform
a full CVS (or whatever) checkout, configure, make, run tests, etc. Confirm that the
build works without manual fussing. If it doesn’t work when you do it by hand, it will
be unlikely to work when the buildbot attempts to do it in an automated fashion.

5. Choose a base directory

This should be somewhere in the buildslave’s account, typically named after the project
which is being tested. The buildslave will not touch any file outside of this directory.
Something like ‘~/Buildbot’ or ‘~/Buildslaves/fooproject’ is appropriate.

6. Get the buildmaster host/port, botname, and password

When the buildbot admin configures the buildmaster to accept and use your buildslave,
they will provide you with the following pieces of information:

• your buildslave’s name

• the password assigned to your buildslave

• the hostname and port number of the buildmaster, i.e. buildbot.example.org:8007

7. Create the buildslave

Now run the ’buildbot’ command as follows:

buildbot create-slave BASEDIR MASTERHOST:PORT SLAVENAME PASSWORD

This will create the base directory and a collection of files inside, including the
‘buildbot.tac’ file that contains all the information you passed to the buildbot

command.

8. Fill in the hostinfo files

When it first connects, the buildslave will send a few files up to the buildmaster which
describe the host that it is running on. These files are presented on the web status
display so that developers have more information to reproduce any test failures that
are witnessed by the buildbot. There are sample files in the ‘info’ subdirectory of the

Chapter 2: Installation 12

buildbot’s base directory. You should edit these to correctly describe you and your
host.

‘BASEDIR/info/admin’ should contain your name and email address. This is the “build-
slave admin address”, and will be visible from the build status page (so you may wish
to munge it a bit if address-harvesting spambots are a concern).

‘BASEDIR/info/host’ should be filled with a brief description of the host: OS, version,
memory size, CPU speed, versions of relevant libraries installed, and finally the version
of the buildbot code which is running the buildslave.

The optional ‘BASEDIR/info/access_uri’ can specify a URI which will connect a user
to the machine. Many systems accept ssh://hostname URIs for this purpose.

If you run many buildslaves, you may want to create a single ‘~buildslave/info’ file
and share it among all the buildslaves with symlinks.

2.5.1 Buildslave Options

There are a handful of options you might want to use when creating the buildslave with
the buildbot create-slave <options> DIR <params> command. You can type buildbot

create-slave --help for a summary. To use these, just include them on the buildbot

create-slave command line, like this:

buildbot create-slave --umask=022 ~/buildslave buildmaster.example.org:42012 myslavename

--usepty This is a boolean flag that tells the buildslave whether to launch child processes
in a PTY or with regular pipes (the default) when the master does not specify.
This option is deprecated, as this particular parameter is better specified on
the master.

--umask This is a string (generally an octal representation of an integer) which will cause
the buildslave process’ “umask” value to be set shortly after initialization. The
“twistd” daemonization utility forces the umask to 077 at startup (which means
that all files created by the buildslave or its child processes will be unreadable
by any user other than the buildslave account). If you want build products to
be readable by other accounts, you can add --umask=022 to tell the buildslave
to fix the umask after twistd clobbers it. If you want build products to be
writable by other accounts too, use --umask=000, but this is likely to be a
security problem.

--keepalive

This is a number that indicates how frequently “keepalive” messages should be
sent from the buildslave to the buildmaster, expressed in seconds. The default
(600) causes a message to be sent to the buildmaster at least once every 10
minutes. To set this to a lower value, use e.g. --keepalive=120.

If the buildslave is behind a NAT box or stateful firewall, these messages may
help to keep the connection alive: some NAT boxes tend to forget about a
connection if it has not been used in a while. When this happens, the build-
master will think that the buildslave has disappeared, and builds will time out.
Meanwhile the buildslave will not realize than anything is wrong.

Chapter 2: Installation 13

--maxdelay

This is a number that indicates the maximum amount of time the buildslave
will wait between connection attempts, expressed in seconds. The default (300)
causes the buildslave to wait at most 5 minutes before trying to connect to the
buildmaster again.

--log-size

This is the size in bytes when to rotate the Twisted log files.

--log-count

This is the number of log rotations to keep around. You can either specify a
number or None (the default) to keep all ‘twistd.log’ files around.

2.6 Launching the daemons

Both the buildmaster and the buildslave run as daemon programs. To launch them, pass
the working directory to the buildbot command:

buildbot start BASEDIR

The BASEDIR is option and can be omitted if the current directory contains the buildbot
configuration (the ‘buildbot.tac’ file).

buildbot start

This command will start the daemon and then return, so normally it will not pro-
duce any output. To verify that the programs are indeed running, look for a pair of files
named ‘twistd.log’ and ‘twistd.pid’ that should be created in the working directory.
‘twistd.pid’ contains the process ID of the newly-spawned daemon.

When the buildslave connects to the buildmaster, new directories will start appearing
in its base directory. The buildmaster tells the slave to create a directory for each Builder
which will be using that slave. All build operations are performed within these directories:
CVS checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the buildbot daemons to
be started at boot time. One way is to use cron, by putting them in a @reboot crontab
entry1:

@reboot buildbot start BASEDIR

When you run crontab to set this up, remember to do it as the buildmaster or buildslave
account! If you add this to your crontab when running as your regular account (or worse
yet, root), then the daemon will run as the wrong user, quite possibly as one with more
authority than you intended to provide.

It is important to remember that the environment provided to cron jobs and init scripts
can be quite different that your normal runtime. There may be fewer environment variables
specified, and the PATH may be shorter than usual. It is a good idea to test out this
method of launching the buildslave by using a cron job with a time in the near future, with
the same command, and then check ‘twistd.log’ to make sure the slave actually started
correctly. Common problems here are for ‘/usr/local’ or ‘~/bin’ to not be on your PATH,
or for PYTHONPATH to not be set correctly. Sometimes HOME is messed up too.

1 this @reboot syntax is understood by Vixie cron, which is the flavor usually provided with linux systems.
Other unices may have a cron that doesn’t understand @reboot

Chapter 2: Installation 14

To modify the way the daemons are started (perhaps you want to set some environ-
ment variables first, or perform some cleanup each time), you can create a file named
‘Makefile.buildbot’ in the base directory. When the ‘buildbot’ front-end tool is told
to start the daemon, and it sees this file (and ‘/usr/bin/make’ exists), it will do make

-f Makefile.buildbot start instead of its usual action (which involves running twistd).
When the buildmaster or buildslave is installed, a ‘Makefile.sample’ is created which im-
plements the same behavior as the the ‘buildbot’ tool uses, so if you want to customize
the process, just copy ‘Makefile.sample’ to ‘Makefile.buildbot’ and edit it as necessary.

Some distributions may include conveniences to make starting buildbot at boot time
easy. For instance, with the default buildbot package in Debian-based distributions, you
may only need to modify /etc/default/buildbot (see also /etc/init.d/buildbot, which
reads the configuration in /etc/default/buildbot).

2.7 Logfiles

While a buildbot daemon runs, it emits text to a logfile, named ‘twistd.log’. A command
like tail -f twistd.log is useful to watch the command output as it runs.

The buildmaster will announce any errors with its configuration file in the logfile, so it is
a good idea to look at the log at startup time to check for any problems. Most buildmaster
activities will cause lines to be added to the log.

2.8 Shutdown

To stop a buildmaster or buildslave manually, use:

buildbot stop BASEDIR

This simply looks for the ‘twistd.pid’ file and kills whatever process is identified within.

At system shutdown, all processes are sent a SIGKILL. The buildmaster and buildslave
will respond to this by shutting down normally.

The buildmaster will respond to a SIGHUP by re-reading its config file. Of course, this
only works on unix-like systems with signal support, and won’t work on Windows. The
following shortcut is available:

buildbot reconfig BASEDIR

When you update the Buildbot code to a new release, you will need to restart the
buildmaster and/or buildslave before it can take advantage of the new code. You can do a
buildbot stop BASEDIR and buildbot start BASEDIR in quick succession, or you can use
the restart shortcut, which does both steps for you:

buildbot restart BASEDIR

There are certain configuration changes that are not handled cleanly by buildbot

reconfig. If this occurs, buildbot restart is a more robust tool to fully switch over
to the new configuration.

buildbot restart may also be used to start a stopped Buildbot instance. This be-
haviour is useful when writing scripts that stop, start and restart Buildbot.

A buildslave may also be gracefully shutdown from the see Section 7.1 [WebStatus],
page 105 status plugin. This is useful to shutdown a buildslave without interrupting any
current builds. The buildmaster will wait until the buildslave is finished all its current
builds, and will then tell the buildslave to shutdown.

Chapter 2: Installation 15

2.9 Maintenance

It is a good idea to check the buildmaster’s status page every once in a while, to see if your
buildslave is still online. Eventually the buildbot will probably be enhanced to send you
email (via the ‘info/admin’ email address) when the slave has been offline for more than a
few hours.

If you find you can no longer provide a buildslave to the project, please let the project
admins know, so they can put out a call for a replacement.

The Buildbot records status and logs output continually, each time a build is performed.
The status tends to be small, but the build logs can become quite large. Each build
and log are recorded in a separate file, arranged hierarchically under the buildmaster’s base
directory. To prevent these files from growing without bound, you should periodically delete
old build logs. A simple cron job to delete anything older than, say, two weeks should do
the job. The only trick is to leave the ‘buildbot.tac’ and other support files alone, for
which find’s -mindepth argument helps skip everything in the top directory. You can use
something like the following:

@weekly cd BASEDIR && find . -mindepth 2 i-path ’./public_html/*’ -prune -o -type f

@weekly cd BASEDIR && find twistd.log* -mtime +14 -exec rm {} \;

2.10 Troubleshooting

Here are a few hints on diagnosing common problems.

2.10.1 Starting the buildslave

Cron jobs are typically run with a minimal shell (‘/bin/sh’, not ‘/bin/bash’), and tilde
expansion is not always performed in such commands. You may want to use explicit paths,
because the PATH is usually quite short and doesn’t include anything set by your shell’s
startup scripts (‘.profile’, ‘.bashrc’, etc). If you’ve installed buildbot (or other python
libraries) to an unusual location, you may need to add a PYTHONPATH specification (note
that python will do tilde-expansion on PYTHONPATH elements by itself). Sometimes it is
safer to fully-specify everything:

@reboot PYTHONPATH=~/lib/python /usr/local/bin/buildbot start /usr/home/buildbot/based

Take the time to get the @reboot job set up. Otherwise, things will work fine for a while,
but the first power outage or system reboot you have will stop the buildslave with nothing
but the cries of sorrowful developers to remind you that it has gone away.

2.10.2 Connecting to the buildmaster

If the buildslave cannot connect to the buildmaster, the reason should be described in the
‘twistd.log’ logfile. Some common problems are an incorrect master hostname or port
number, or a mistyped bot name or password. If the buildslave loses the connection to the
master, it is supposed to attempt to reconnect with an exponentially-increasing backoff.
Each attempt (and the time of the next attempt) will be logged. If you get impatient, just
manually stop and re-start the buildslave.

When the buildmaster is restarted, all slaves will be disconnected, and will attempt to
reconnect as usual. The reconnect time will depend upon how long the buildmaster is offline
(i.e. how far up the exponential backoff curve the slaves have travelled). Again, buildbot
stop BASEDIR; buildbot start BASEDIR will speed up the process.

Chapter 2: Installation 16

2.10.3 Forcing Builds

From the buildmaster’s main status web page, you can force a build to be run on your
build slave if you set the option allowForce=True in your master.cfg file see Section 7.1.2
[Enabling the "Force Build" Button], page 107.

Figure out which column is for a builder that runs on your slave, click on that builder’s
name, and the page that comes up will have a "Force Build" button. Fill in the form, hit the
button, and a moment later you should see your slave’s ‘twistd.log’ filling with commands
being run. Using pstree or top should also reveal the cvs/make/gcc/etc processes being
run by the buildslave. Note that the same web page should also show the ‘admin’ and ‘host’
information files that you configured earlier.

Chapter 3: Concepts 17

3 Concepts

This chapter defines some of the basic concepts that the Buildbot uses. You’ll need to
understand how the Buildbot sees the world to configure it properly.

3.1 Version Control Systems

These source trees come from a Version Control System of some kind. CVS and Subversion
are two popular ones, but the Buildbot supports others. All VC systems have some notion
of an upstream repository which acts as a server1, from which clients can obtain source
trees according to various parameters. The VC repository provides source trees of various
projects, for different branches, and from various points in time. The first thing we have to
do is to specify which source tree we want to get.

3.1.1 Generalizing VC Systems

For the purposes of the Buildbot, we will try to generalize all VC systems as having repos-
itories that each provide sources for a variety of projects. Each project is defined as a
directory tree with source files. The individual files may each have revisions, but we ignore
that and treat the project as a whole as having a set of revisions (CVS is really the only VC
system still in widespread use that has per-file revisions.. everything modern has moved to
atomic tree-wide changesets). Each time someone commits a change to the project, a new
revision becomes available. These revisions can be described by a tuple with two items: the
first is a branch tag, and the second is some kind of revision stamp or timestamp. Com-
plex projects may have multiple branch tags, but there is always a default branch. The
timestamp may be an actual timestamp (such as the -D option to CVS), or it may be a
monotonically-increasing transaction number (such as the change number used by SVN and
P4, or the revision number used by Arch/Baz/Bazaar, or a labeled tag used in CVS)2. The
SHA1 revision ID used by Monotone, Mercurial, and Git is also a kind of revision stamp,
in that it specifies a unique copy of the source tree, as does a Darcs “context” file.

When we aren’t intending to make any changes to the sources we check out (at least
not any that need to be committed back upstream), there are two basic ways to use a VC
system:

• Retrieve a specific set of source revisions: some tag or key is used to index this set, which
is fixed and cannot be changed by subsequent developers committing new changes to
the tree. Releases are built from tagged revisions like this, so that they can be rebuilt
again later (probably with controlled modifications).

• Retrieve the latest sources along a specific branch: some tag is used to indicate which
branch is to be used, but within that constraint we want to get the latest revisions.

Build personnel or CM staff typically use the first approach: the build that results is
(ideally) completely specified by the two parameters given to the VC system: repository and
revision tag. This gives QA and end-users something concrete to point at when reporting

1 except Darcs, but since the Buildbot never modifies its local source tree we can ignore the fact that
Darcs uses a less centralized model

2 many VC systems provide more complexity than this: in particular the local views that P4 and ClearCase
can assemble out of various source directories are more complex than we’re prepared to take advantage
of here

Chapter 3: Concepts 18

bugs. Release engineers are also reportedly fond of shipping code that can be traced back
to a concise revision tag of some sort.

Developers are more likely to use the second approach: each morning the developer does
an update to pull in the changes committed by the team over the last day. These builds are
not easy to fully specify: it depends upon exactly when you did a checkout, and upon what
local changes the developer has in their tree. Developers do not normally tag each build
they produce, because there is usually significant overhead involved in creating these tags.
Recreating the trees used by one of these builds can be a challenge. Some VC systems may
provide implicit tags (like a revision number), while others may allow the use of timestamps
to mean “the state of the tree at time X” as opposed to a tree-state that has been explicitly
marked.

The Buildbot is designed to help developers, so it usually works in terms of the latest

sources as opposed to specific tagged revisions. However, it would really prefer to build
from reproducible source trees, so implicit revisions are used whenever possible.

3.1.2 Source Tree Specifications

So for the Buildbot’s purposes we treat each VC system as a server which can take a list
of specifications as input and produce a source tree as output. Some of these specifications
are static: they are attributes of the builder and do not change over time. Others are more
variable: each build will have a different value. The repository is changed over time by a
sequence of Changes, each of which represents a single developer making changes to some
set of files. These Changes are cumulative3.

For normal builds, the Buildbot wants to get well-defined source trees that contain
specific Changes, and exclude other Changes that may have occurred after the desired
ones. We assume that the Changes arrive at the buildbot (through one of the mechanisms
described in see Section 5.1 [Change Sources], page 50) in the same order in which they are
committed to the repository. The Buildbot waits for the tree to become “stable” before
initiating a build, for two reasons. The first is that developers frequently make multiple
related commits in quick succession, even when the VC system provides ways to make
atomic transactions involving multiple files at the same time. Running a build in the
middle of these sets of changes would use an inconsistent set of source files, and is likely
to fail (and is certain to be less useful than a build which uses the full set of changes).
The tree-stable-timer is intended to avoid these useless builds that include some of the
developer’s changes but not all. The second reason is that some VC systems (i.e. CVS) do
not provide repository-wide transaction numbers, so that timestamps are the only way to
refer to a specific repository state. These timestamps may be somewhat ambiguous, due
to processing and notification delays. By waiting until the tree has been stable for, say, 10
minutes, we can choose a timestamp from the middle of that period to use for our source
checkout, and then be reasonably sure that any clock-skew errors will not cause the build
to be performed on an inconsistent set of source files.

The Schedulers always use the tree-stable-timer, with a timeout that is configured to
reflect a reasonable tradeoff between build latency and change frequency. When the VC
system provides coherent repository-wide revision markers (such as Subversion’s revision

3 Monotone’s multiple heads feature violates this assumption of cumulative Changes, but in most situations
the changes don’t occur frequently enough for this to be a significant problem

Chapter 3: Concepts 19

numbers, or in fact anything other than CVS’s timestamps), the resulting Build is simply
performed against a source tree defined by that revision marker. When the VC system does
not provide this, a timestamp from the middle of the tree-stable period is used to generate
the source tree4.

3.1.3 How Different VC Systems Specify Sources

For CVS, the static specifications are repository and module. In addition to those, each
build uses a timestamp (or omits the timestamp to mean the latest) and branch tag

(which defaults to HEAD). These parameters collectively specify a set of sources from
which a build may be performed.

Subversion (http://subversion.tigris.org) combines the repository, module, and
branch into a single Subversion URL parameter. Within that scope, source checkouts can
be specified by a numeric revision number (a repository-wide monotonically-increasing
marker, such that each transaction that changes the repository is indexed by a different
revision number), or a revision timestamp. When branches are used, the repository and
module form a static baseURL, while each build has a revision number and a branch

(which defaults to a statically-specified defaultBranch). The baseURL and branch are
simply concatenated together to derive the svnurl to use for the checkout.

Perforce (http://www.perforce.com/) is similar. The server is specified through a
P4PORT parameter. Module and branch are specified in a single depot path, and revisions
are depot-wide. When branches are used, the p4base and defaultBranch are concatenated
together to produce the depot path.

Arch (http://wiki.gnuarch.org/) and Bazaar (http://bazaar.canonical.com/)
specify a repository by URL, as well as a version which is kind of like a branch name.
Arch uses the word archive to represent the repository. Arch lets you push changes from
one archive to another, removing the strict centralization required by CVS and SVN.
It retains the distinction between repository and working directory that most other VC
systems use. For complex multi-module directory structures, Arch has a built-in build

config layer with which the checkout process has two steps. First, an initial bootstrap
checkout is performed to retrieve a set of build-config files. Second, one of these files is
used to figure out which archives/modules should be used to populate subdirectories of the
initial checkout.

Builders which use Arch and Bazaar therefore have a static archive url, and a default
“branch” (which is a string that specifies a complete category–branch–version triple). Each
build can have its own branch (the category–branch–version string) to override the default,
as well as a revision number (which is turned into a –patch-NN suffix when performing the
checkout).

Bzr (http://bazaar-vcs.org) (which is a descendant of Arch/Bazaar, and is frequently
referred to as “Bazaar”) has the same sort of repository-vs-workspace model as Arch, but
the repository data can either be stored inside the working directory or kept elsewhere
(either on the same machine or on an entirely different machine). For the purposes of
Buildbot (which never commits changes), the repository is specified with a URL and a
revision number.

4 this checkoutDelay defaults to half the tree-stable timer, but it can be overridden with an argument to
the Source Step

Chapter 3: Concepts 20

The most common way to obtain read-only access to a bzr tree is via HTTP, simply
by making the repository visible through a web server like Apache. Bzr can also use FTP
and SFTP servers, if the buildslave process has sufficient privileges to access them. Higher
performance can be obtained by running a special Bazaar-specific server. None of these
matter to the buildbot: the repository URL just has to match the kind of server being
used. The repoURL argument provides the location of the repository.

Branches are expressed as subdirectories of the main central repository, which means
that if branches are being used, the BZR step is given a baseURL and defaultBranch

instead of getting the repoURL argument.

Darcs (http://darcs.net/) doesn’t really have the notion of a single master repository.
Nor does it really have branches. In Darcs, each working directory is also a repository, and
there are operations to push and pull patches from one of these repositories to another.
For the Buildbot’s purposes, all you need to do is specify the URL of a repository that you
want to build from. The build slave will then pull the latest patches from that repository
and build them. Multiple branches are implemented by using multiple repositories (possibly
living on the same server).

Builders which use Darcs therefore have a static repourl which specifies the location
of the repository. If branches are being used, the source Step is instead configured with
a baseURL and a defaultBranch, and the two strings are simply concatenated together
to obtain the repository’s URL. Each build then has a specific branch which replaces
defaultBranch, or just uses the default one. Instead of a revision number, each build
can have a “context”, which is a string that records all the patches that are present in a
given tree (this is the output of darcs changes --context, and is considerably less concise
than, e.g. Subversion’s revision number, but the patch-reordering flexibility of Darcs makes
it impossible to provide a shorter useful specification).

Mercurial (http://selenic.com/mercurial) is like Darcs, in that each branch is stored
in a separate repository. The repourl, baseURL, and defaultBranch arguments are all
handled the same way as with Darcs. The “revision”, however, is the hash identifier returned
by hg identify.

Git (http://git.or.cz/) also follows a decentralized model, and each repository can
have several branches and tags. The source Step is configured with a static repourl which
specifies the location of the repository. In addition, an optional branch parameter can be
specified to check out code from a specific branch instead of the default “master” branch.
The “revision” is specified as a SHA1 hash as returned by e.g. git rev-parse. No attempt
is made to ensure that the specified revision is actually a subset of the specified branch.

Monotone (http://code.monotone.ca/p/monotone) follows the a decentralized model
as well, where each repository can have several branches and tags. The source Step is
configured with repourl which specifies the location of the repository, and branch, which
is the default branch to use. The “revision” is given as a SHA1 hash that is returned by mtn

heads among others. No attempt is made to ensure that the specified revision is a subset
of the specified branch.

3.1.4 Attributes of Changes

Chapter 3: Concepts 21

Who

Each Change has a who attribute, which specifies which developer is responsible for the
change. This is a string which comes from a namespace controlled by the VC repository.
Frequently this means it is a username on the host which runs the repository, but not all
VC systems require this (Arch, for example, uses a fully-qualified Arch ID, which looks
like an email address, as does Darcs). Each StatusNotifier will map the who attribute into
something appropriate for their particular means of communication: an email address, an
IRC handle, etc.

Files

It also has a list of files, which are just the tree-relative filenames of any files that
were added, deleted, or modified for this Change. These filenames are used by the
fileIsImportant function (in the Scheduler) to decide whether it is worth triggering a
new build or not, e.g. the function could use the following function to only run a build if a
C file were checked in:

def has_C_files(change):

for name in change.files:

if name.endswith(".c"):

return True

return False

Certain BuildSteps can also use the list of changed files to run a more targeted series of
tests, e.g. the python_twisted.Trial step can run just the unit tests that provide coverage
for the modified .py files instead of running the full test suite.

Comments

The Change also has a comments attribute, which is a string containing any checkin com-
ments.

Revision

Each Change can have a revision attribute, which describes how to get a tree with a
specific state: a tree which includes this Change (and all that came before it) but none that
come after it. If this information is unavailable, the .revision attribute will be None. These
revisions are provided by the ChangeSource, and consumed by the computeSourceRevision
method in the appropriate source.Source class.

‘CVS’ revision is an int, seconds since the epoch

‘SVN’ revision is an int, the changeset number (r%d)

‘Darcs’ revision is a large string, the output of darcs changes --context

‘Mercurial’
revision is a short string (a hash ID), the output of hg identify

‘Arch/Bazaar’
revision is the full revision ID (ending in –patch-%d)

‘P4’ revision is an int, the transaction number

Chapter 3: Concepts 22

‘Git’ revision is a short string (a SHA1 hash), the output of e.g. git rev-parse

‘Monotone’
revision is a short string (a SHA1 hash), the output of e.g. mtn heads

Branches

The Change might also have a branch attribute. This indicates that all of the Change’s files
are in the same named branch. The Schedulers get to decide whether the branch should be
built or not.

For VC systems like CVS, Arch, Monotone, and Git, the branch name is unrelated to
the filename. (that is, the branch name and the filename inhabit unrelated namespaces).
For SVN, branches are expressed as subdirectories of the repository, so the file’s “svnurl” is
a combination of some base URL, the branch name, and the filename within the branch. (In
a sense, the branch name and the filename inhabit the same namespace). Darcs branches
are subdirectories of a base URL just like SVN. Mercurial branches are the same as Darcs.

‘CVS’ branch=’warner-newfeature’, files=[’src/foo.c’]

‘SVN’ branch=’branches/warner-newfeature’, files=[’src/foo.c’]

‘Darcs’ branch=’warner-newfeature’, files=[’src/foo.c’]

‘Mercurial’
branch=’warner-newfeature’, files=[’src/foo.c’]

‘Arch/Bazaar’
branch=’buildbot–usebranches–0’, files=[’buildbot/master.py’]

‘Git’ branch=’warner-newfeature’, files=[’src/foo.c’]

‘Monotone’
branch=’warner-newfeature’, files=[’src/foo.c’]

Build Properties

A Change may have one or more properties attached to it, usually specified through the
Force Build form or see Section 8.3.1 [sendchange], page 127. Properties are discussed in
detail in the see Section 3.7 [Build Properties], page 27 section.

Links

Finally, the Change might have a links list, which is intended to provide a list of URLs to
a viewcvs-style web page that provides more detail for this Change, perhaps including the
full file diffs.

3.2 Schedulers

Each Buildmaster has a set of Scheduler objects, each of which gets a copy of every
incoming Change. The Schedulers are responsible for deciding when Builds should be run.
Some Buildbot installations might have a single Scheduler, while others may have several,
each for a different purpose.

Chapter 3: Concepts 23

For example, a “quick” scheduler might exist to give immediate feedback to developers,
hoping to catch obvious problems in the code that can be detected quickly. These typically
do not run the full test suite, nor do they run on a wide variety of platforms. They also
usually do a VC update rather than performing a brand-new checkout each time. You could
have a “quick” scheduler which used a 30 second timeout, and feeds a single “quick” Builder
that uses a VC mode=’update’ setting.

A separate “full” scheduler would run more comprehensive tests a little while later, to
catch more subtle problems. This scheduler would have a longer tree-stable-timer, maybe
30 minutes, and would feed multiple Builders (with a mode= of ’copy’, ’clobber’, or
’export’).

The tree-stable-timer and fileIsImportant decisions are made by the Scheduler.
Dependencies are also implemented here. Periodic builds (those which are run every N
seconds rather than after new Changes arrive) are triggered by a special Periodic Scheduler
subclass. The default Scheduler class can also be told to watch for specific branches, ignoring
Changes on other branches. This may be useful if you have a trunk and a few release
branches which should be tracked, but when you don’t want to have the Buildbot pay
attention to several dozen private user branches.

When the setup has multiple sources of Changes the category can be used for Scheduler
objects to filter out a subset of the Changes. Note that not all change sources can attach a
category.

Some Schedulers may trigger builds for other reasons, other than recent Changes. For
example, a Scheduler subclass could connect to a remote buildmaster and watch for builds
of a library to succeed before triggering a local build that uses that library.

Each Scheduler creates and submits BuildSet objects to the BuildMaster, which is
then responsible for making sure the individual BuildRequests are delivered to the target
Builders.

Scheduler instances are activated by placing them in the c[’schedulers’] list in the
buildmaster config file. Each Scheduler has a unique name.

3.3 BuildSet

A BuildSet is the name given to a set of Builds that all compile/test the same version
of the tree on multiple Builders. In general, all these component Builds will perform the
same sequence of Steps, using the same source code, but on different platforms or against
a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of the component Builds
have failed, and therefore can succeed only if all of the component Builds have succeeded.
There are two kinds of status notification messages that can be emitted for a BuildSet: the
firstFailure type (which fires as soon as we know the BuildSet will fail), and the Finished
type (which fires once the BuildSet has completely finished, regardless of whether the overall
set passed or failed).

A BuildSet is created with a source stamp tuple of (branch, revision, changes, patch),
some of which may be None, and a list of Builders on which it is to be run. They are then
given to the BuildMaster, which is responsible for creating a separate BuildRequest for
each Builder.

There are a couple of different likely values for the SourceStamp:

Chapter 3: Concepts 24

(revision=None, changes=[CHANGES], patch=None)

This is a SourceStamp used when a series of Changes have triggered a build.
The VC step will attempt to check out a tree that contains CHANGES (and
any changes that occurred before CHANGES, but not any that occurred after
them).

(revision=None, changes=None, patch=None)

This builds the most recent code on the default branch. This is the sort of
SourceStamp that would be used on a Build that was triggered by a user request,
or a Periodic scheduler. It is also possible to configure the VC Source Step to
always check out the latest sources rather than paying attention to the Changes
in the SourceStamp, which will result in same behavior as this.

(branch=BRANCH, revision=None, changes=None, patch=None)

This builds the most recent code on the given BRANCH. Again, this is generally
triggered by a user request or Periodic build.

(revision=REV, changes=None, patch=(LEVEL, DIFF, SUBDIR_ROOT))

This checks out the tree at the given revision REV, then applies a patch (using
patch -pLEVEL <DIFF) from inside the relative directory SUBDIR ROOT. Item
SUBDIR ROOT is optional and defaults to the builder working directory. The
Section 8.2.3 [try], page 121 feature uses this kind of SourceStamp. If patch is
None, the patching step is bypassed.

The buildmaster is responsible for turning the BuildSet into a set of BuildRequest

objects and queueing them on the appropriate Builders.

3.4 BuildRequest

A BuildRequest is a request to build a specific set of sources on a single specific Builder.
Each Builder runs the BuildRequest as soon as it can (i.e. when an associated buildslave
becomes free). BuildRequests are prioritized from oldest to newest, so when a buildslave
becomes free, the Builder with the oldest BuildRequest is run.

The BuildRequest contains the SourceStamp specification. The actual process of run-
ning the build (the series of Steps that will be executed) is implemented by the Build

object. In this future this might be changed, to have the Build define what gets built, and
a separate BuildProcess (provided by the Builder) to define how it gets built.

BuildRequest is created with optional Properties. One of these, owner, is collected by
the resultant Build and added to the set of interested users to which status notifications
will be sent, depending on the configuration for each status object.

The BuildRequest may be mergeable with other compatible BuildRequests. Builds
that are triggered by incoming Changes will generally be mergeable. Builds that are trig-
gered by user requests are generally not, unless they are multiple requests to build the latest

sources of the same branch.

3.5 Builder

The Buildmaster runs a collection of Builders, each of which handles a single type of build
(e.g. full versus quick), on one or more build slaves. Builders serve as a kind of queue for

Chapter 3: Concepts 25

a particular type of build. Each Builder gets a separate column in the waterfall display.
In general, each Builder runs independently (although various kinds of interlocks can cause
one Builder to have an effect on another).

Each Builder is a long-lived object which controls a sequence of Builds. Each Builder
is created when the config file is first parsed, and lives forever (or rather until it is removed
from the config file). It mediates the connections to the buildslaves that do all the work,
and is responsible for creating the Build objects that decide how a build is performed (i.e.,
which steps are executed in what order).

Each Builder gets a unique name, and the path name of a directory where it gets to do
all its work (there is a buildmaster-side directory for keeping status information, as well as a
buildslave-side directory where the actual checkout/compile/test commands are executed).
It also gets a BuildFactory, which is responsible for creating new Build instances: because
the Build instance is what actually performs each build, choosing the BuildFactory is the
way to specify what happens each time a build is done.

Each Builder is associated with one of more BuildSlaves. A Builder which is used to
perform OS-X builds (as opposed to Linux or Solaris builds) should naturally be associated
with an OS-X-based buildslave.

If multiple buildslaves are available for any given Builder, you will have some measure of
redundancy: in case one slave goes offline, the others can still keep the Builder working. In
addition, multiple buildslaves will allow multiple simultaneous builds for the same Builder,
which might be useful if you have a lot of forced or “try” builds taking place.

If you use this feature, it is important to make sure that the buildslaves are all, in fact,
capable of running the given build. The slave hosts should be configured similarly, otherwise
you will spend a lot of time trying (unsuccessfully) to reproduce a failure that only occurs on
some of the buildslaves and not the others. Different platforms, operating systems, versions
of major programs or libraries, all these things mean you should use separate Builders.

3.6 Users

Buildbot has a somewhat limited awareness of users. It assumes the world consists of a
set of developers, each of whom can be described by a couple of simple attributes. These
developers make changes to the source code, causing builds which may succeed or fail.

Each developer is primarily known through the source control system. Each Change
object that arrives is tagged with a who field that typically gives the account name (on the
repository machine) of the user responsible for that change. This string is the primary key
by which the User is known, and is displayed on the HTML status pages and in each Build’s
“blamelist”.

To do more with the User than just refer to them, this username needs to be mapped
into an address of some sort. The responsibility for this mapping is left up to the status
module which needs the address. The core code knows nothing about email addresses or
IRC nicknames, just user names.

3.6.1 Doing Things With Users

Each Change has a single User who is responsible for that Change. Most Builds have a set
of Changes: the Build represents the first time these Changes have been built and tested

Chapter 3: Concepts 26

by the Buildbot. The build has a “blamelist” that consists of a simple union of the Users
responsible for all the Build’s Changes.

The Build provides (through the IBuildStatus interface) a list of Users who are “involved”
in the build. For now this is equal to the blamelist, but in the future it will be expanded
to include a “build sheriff” (a person who is “on duty” at that time and responsible for
watching over all builds that occur during their shift), as well as per-module owners who
simply want to keep watch over their domain (chosen by subdirectory or a regexp matched
against the filenames pulled out of the Changes). The Involved Users are those who probably
have an interest in the results of any given build.

In the future, Buildbot will acquire the concept of “Problems”, which last longer than
builds and have beginnings and ends. For example, a test case which passed in one build
and then failed in the next is a Problem. The Problem lasts until the test case starts passing
again, at which point the Problem is said to be “resolved”.

If there appears to be a code change that went into the tree at the same time as the
test started failing, that Change is marked as being resposible for the Problem, and the
user who made the change is added to the Problem’s “Guilty” list. In addition to this user,
there may be others who share responsibility for the Problem (module owners, sponsoring
developers). In addition to the Responsible Users, there may be a set of Interested Users,
who take an interest in the fate of the Problem.

Problems therefore have sets of Users who may want to be kept aware of the condition
of the problem as it changes over time. If configured, the Buildbot can pester everyone on
the Responsible list with increasing harshness until the problem is resolved, with the most
harshness reserved for the Guilty parties themselves. The Interested Users may merely
be told when the problem starts and stops, as they are not actually responsible for fixing
anything.

3.6.2 Email Addresses

The buildbot.status.mail.MailNotifier class (see Section 7.2 [MailNotifier], page 112)
provides a status target which can send email about the results of each build. It accepts
a static list of email addresses to which each message should be delivered, but it can also
be configured to send mail to the Build’s Interested Users. To do this, it needs a way to
convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the system which
hosts the repository. As such, turning the name into an email address is a simple matter of
appending “@repositoryhost.com”. Some projects use other kinds of mappings (for example
the preferred email address may be at “project.org” despite the repository host being named
“cvs.project.org”), and some VC systems have full separation between the concept of a user
and that of an account on the repository host (like Perforce). Some systems (like Arch) put
a full contact email address in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup object. This
provides a .getAddress method which accepts a name and (eventually) returns an address.
The default MailNotifier module provides an EmailLookup which simply appends a static
string, configurable when the notifier is created. To create more complex behaviors (perhaps
using an LDAP lookup, or using “finger” on a central host to determine a preferred address
for the developer), provide a different object as the lookup argument.

Chapter 3: Concepts 27

In the future, when the Problem mechanism has been set up, the Buildbot will need to
send mail to arbitrary Users. It will do this by locating a MailNotifier-like object among
all the buildmaster’s status targets, and asking it to send messages to various Users. This
means the User-to-address mapping only has to be set up once, in your MailNotifier, and
every email message the buildbot emits will take advantage of it.

3.6.3 IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class provides a status target which can
announce the results of each build. It also provides an interactive interface by responding
to online queries posted in the channel or sent as private messages.

In the future, the buildbot can be configured map User names to IRC nicknames, to
watch for the recent presence of these nicknames, and to deliver build status messages to
the interested parties. Like MailNotifier does for email addresses, the IRC object will have
an IRCLookup which is responsible for nicknames. The mapping can be set up statically, or
it can be updated by online users themselves (by claiming a username with some kind of
“buildbot: i am user warner” commands).

Once the mapping is established, the rest of the buildbot can ask the IRC object to
send messages to various users. It can report on the likelihood that the user saw the given
message (based upon how long the user has been inactive on the channel), which might
prompt the Problem Hassler logic to send them an email message instead.

3.6.4 Live Status Clients

The Buildbot also offers a PB-based status client interface which can display real-time build
status in a GUI panel on the developer’s desktop. This interface is normally anonymous, but
it could be configured to let the buildmaster know which developer is using the status client.
The status client could then be used as a message-delivery service, providing an alternative
way to deliver low-latency high-interruption messages to the developer (like “hey, you broke
the build”).

3.7 Build Properties

Each build has a set of “Build Properties”, which can be used by its BuildStep to modify
their actions. These properties, in the form of key-value pairs, provide a general framework
for dynamically altering the behavior of a build based on its circumstances.

Properties come from a number of places:

• global configuration – These properties apply to all builds.

• schedulers – A scheduler can specify properties available to all the builds it starts.

• changes – A change can have properties attached to it. These are usually specified
through Force Build or sendchange.

• buildslaves – A buildslave can pass properties on to the builds it performs.

• builds – A build automatically sets a number of properties on itself.

• steps – Steps of a build can set properties that are available to subsequent steps. In
particular, source steps set a number of properties.

Properties are very flexible, and can be used to implement all manner of functionality.
Here are some examples:

Chapter 3: Concepts 28

Most Source steps record the revision that they checked out in the got_revision prop-
erty. A later step could use this property to specify the name of a fully-built tarball, dropped
in an easily-acessible directory for later testing.

Some projects want to perform nightly builds as well as in response to committed
changes. Such a project would run two schedulers, both pointing to the same set of builders,
but could provide an is_nightly property so that steps can distinguish the nightly builds,
perhaps to run more resource-intensive tests.

Some projects have different build processes on different systems. Rather than create a
build factory for each slave, the steps can use buildslave properties to identify the unique
aspects of each slave and adapt the build process dynamically.

Chapter 4: Configuration 29

4 Configuration

The buildbot’s behavior is defined by the “config file”, which normally lives in the
‘master.cfg’ file in the buildmaster’s base directory (but this can be changed with an
option to the buildbot create-master command). This file completely specifies which
Builders are to be run, which slaves they should use, how Changes should be tracked, and
where the status information is to be sent. The buildmaster’s ‘buildbot.tac’ file names
the base directory; everything else comes from the config file.

A sample config file was installed for you when you created the buildmaster, but you
will need to edit it before your buildbot will do anything useful.

This chapter gives an overview of the format of this file and the various sections in it.
You will need to read the later chapters to understand how to fill in each section properly.

4.1 Config File Format

The config file is, fundamentally, just a piece of Python code which defines a dictionary
named BuildmasterConfig, with a number of keys that are treated specially. You don’t
need to know Python to do basic configuration, though, you can just copy the syntax of
the sample file. If you are comfortable writing Python code, however, you can use all the
power of a full programming language to achieve more complicated configurations.

The BuildmasterConfig name is the only one which matters: all other names defined
during the execution of the file are discarded. When parsing the config file, the Buildmaster
generally compares the old configuration with the new one and performs the minimum set
of actions necessary to bring the buildbot up to date: Builders which are not changed are
left untouched, and Builders which are modified get to keep their old event history.

Basic Python syntax: comments start with a hash character (“#”), tuples are defined
with (parenthesis, pairs), arrays are defined with [square, brackets], tuples and ar-
rays are mostly interchangeable. Dictionaries (data structures which map “keys” to “val-
ues”) are defined with curly braces: {’key1’: ’value1’, ’key2’: ’value2’} . Function
calls (and object instantiation) can use named parameters, like w = html.Waterfall(http_

port=8010).

The config file starts with a series of import statements, which make various kinds of
Steps and Status targets available for later use. The main BuildmasterConfig dictionary
is created, then it is populated with a variety of keys. These keys are broken roughly into
the following sections, each of which is documented in the rest of this chapter:

• Project Definitions

• Change Sources / Schedulers

• Slaveport

• Buildslave Configuration

• Builders / Interlocks

• Status Targets

• Debug options

The config file can use a few names which are placed into its namespace:

Chapter 4: Configuration 30

basedir the base directory for the buildmaster. This string has not been expanded, so
it may start with a tilde. It needs to be expanded before use. The config file is
located in os.path.expanduser(os.path.join(basedir, ’master.cfg’))

4.2 Loading the Config File

The config file is only read at specific points in time. It is first read when the buildmaster
is launched. Once it is running, there are various ways to ask it to reload the config file.
If you are on the system hosting the buildmaster, you can send a SIGHUP signal to it: the
buildbot tool has a shortcut for this:

buildbot reconfig BASEDIR

This command will show you all of the lines from ‘twistd.log’ that relate to the recon-
figuration. If there are any problems during the config-file reload, they will be displayed in
these lines.

The debug tool (buildbot debugclient --master HOST:PORT) has a “Reload .cfg” but-
ton which will also trigger a reload. In the future, there will be other ways to accomplish
this step (probably a password-protected button on the web page, as well as a privileged
IRC command).

When reloading the config file, the buildmaster will endeavor to change as little as
possible about the running system. For example, although old status targets may be shut
down and new ones started up, any status targets that were not changed since the last time
the config file was read will be left running and untouched. Likewise any Builders which
have not been changed will be left running. If a Builder is modified (say, the build process
is changed) while a Build is currently running, that Build will keep running with the old
process until it completes. Any previously queued Builds (or Builds which get queued after
the reconfig) will use the new process.

4.3 Testing the Config File

To verify that the config file is well-formed and contains no deprecated or invalid elements,
use the “checkconfig” command, passing it either a master directory or a config file.

% buildbot checkconfig master.cfg

Config file is good!

or

% buildbot checkconfig /tmp/masterdir

Config file is good!

If the config file has deprecated features (perhaps because you’ve upgraded the build-
master and need to update the config file to match), they will be announced by checkconfig.
In this case, the config file will work, but you should really remove the deprecated items
and use the recommended replacements instead:

% buildbot checkconfig master.cfg

/usr/lib/python2.4/site-packages/buildbot/master.py:559: DeprecationWarning: c[’sources’]

deprecated as of 0.7.6 and will be removed by 0.8.0 . Please use c[’change_source’]

warnings.warn(m, DeprecationWarning)

Config file is good!

If the config file is simply broken, that will be caught too:

Chapter 4: Configuration 31

% buildbot checkconfig master.cfg

Traceback (most recent call last):

File "/usr/lib/python2.4/site-packages/buildbot/scripts/runner.py", line 834, in doCheckConfig

ConfigLoader(configFile)

File "/usr/lib/python2.4/site-packages/buildbot/scripts/checkconfig.py", line 31,

self.loadConfig(configFile)

File "/usr/lib/python2.4/site-packages/buildbot/master.py", line 480, in loadConfig

exec f in localDict

File "/home/warner/BuildBot/master/foolscap/master.cfg", line 90, in ?

c[bogus] = "stuff"

NameError: name ’bogus’ is not defined

4.4 Defining the Project

There are a couple of basic settings that you use to tell the buildbot what project it is
working on. This information is used by status reporters to let users find out more about
the codebase being exercised by this particular Buildbot installation.

c[’projectName’] = "Buildbot"

c[’projectURL’] = "http://buildbot.sourceforge.net/"

c[’buildbotURL’] = "http://localhost:8010/"

projectName is a short string will be used to describe the project that this buildbot is
working on. For example, it is used as the title of the waterfall HTML page.

projectURL is a string that gives a URL for the project as a whole. HTML status
displays will show projectName as a link to projectURL, to provide a link from buildbot
HTML pages to your project’s home page.

The buildbotURL string should point to the location where the buildbot’s internal web
server (usually the html.Waterfall page) is visible. This typically uses the port number
set when you create the Waterfall object: the buildbot needs your help to figure out a
suitable externally-visible host name.

When status notices are sent to users (either by email or over IRC), buildbotURL will
be used to create a URL to the specific build or problem that they are being notified about.
It will also be made available to queriers (over IRC) who want to find out where to get
more information about this buildbot.

The logCompressionLimit enables compression of build logs on disk for logs that are
bigger than the given size, or disables that completely if given False. The default value is
4k, which should be a reasonable default on most file systems. This setting has no impact
on status plugins, and merely affects the required disk space on the master for build logs.

The logCompressionMethod controls what type of compression is used for build logs.
The default is ’bz2’, the other valid option is ’gz’. ’bz2’ offers better compression at the
expense of more CPU time.

The logMaxSize parameter sets an upper limit (in bytes) to how large logs from an
individual build step can be. The default value is None, meaning no upper limit to the log
size. Any output exceeding logMaxSize will be truncated, and a message to this effect will
be added to the log’s HEADER channel.

If logMaxSize is set, and the output from a step exceeds the maximum, the
logMaxTailSize parameter controls how much of the end of the build log will be kept.

Chapter 4: Configuration 32

The effect of setting this parameter is that the log will contain the first logMaxSize bytes
and the last logMaxTailSize bytes of output. Don’t set this value too high, as the the
tail of the log is kept in memory.

4.5 Change Sources and Schedulers

The c[’change_source’] key is the ChangeSource instance1 that defines how the buildmas-
ter learns about source code changes. More information about what goes here is available
in See Chapter 5 [Getting Source Code Changes], page 50.

from buildbot.changes.pb import PBChangeSource

c[’change_source’] = PBChangeSource()

(note: in buildbot-0.7.5 and earlier, this key was named c[’sources’], and required a
list. c[’sources’] is deprecated as of buildbot-0.7.6 and is scheduled to be removed in a
future release).

The c[’changeHorizon’] key determines how many changes the master will keep a
record of. One place these changes are displayed is on the waterfall page. This parameter
defaults to 0, which means keep all changes indefinitely.

c[’schedulers’] is a list of Scheduler instances, each of which causes builds to be
started on a particular set of Builders. The two basic Scheduler classes you are likely
to start with are Scheduler and Periodic, but you can write a customized subclass to
implement more complicated build scheduling.

Scheduler arguments should always be specified by name (as keyword arguments), to
allow for future expansion:

sched = Scheduler(name="quick", builderNames=[’lin’, ’win’])

All schedulers have several arguments in common:

name

Each Scheduler must have a unique name. This is used in status displays, and
is also available in the build property scheduler.

builderNames

This is the set of builders which this scheduler should trigger, specified as a list
of names (strings).

properties

This is a dictionary specifying properties that will be transmitted to all builds
started by this scheduler.

Here is a brief catalog of the available Scheduler types. All these Schedulers are classes
in buildbot.scheduler, and the docstrings there are the best source of documentation on
the arguments taken by each one.

1 To be precise, it is an object or a list of objects which all implement the buildbot.interfaces.IChangeSource
Interface. It is unusual to have multiple ChangeSources, so this key accepts either a single ChangeSource
or a sequence of them.

Chapter 4: Configuration 33

4.5.1 Scheduler Scheduler

This is the original and still most popular Scheduler class. It follows exactly one branch, and
starts a configurable tree-stable-timer after each change on that branch. When the timer
expires, it starts a build on some set of Builders. The Scheduler accepts a fileIsImportant

function which can be used to ignore some Changes if they do not affect any “important”
files.

The arguments to this scheduler are:

name

builderNames

properties

branch This Scheduler will pay attention to a single branch, ignoring Changes that
occur on other branches. Setting branch equal to the special value of None

means it should only pay attention to the default branch. Note that None is a
keyword, not a string, so you want to use None and not "None".

treeStableTimer

The Scheduler will wait for this many seconds before starting the build. If new
changes are made during this interval, the timer will be restarted, so really
the build will be started after a change and then after this many seconds of
inactivity.

fileIsImportant

A callable which takes one argument, a Change instance, and returns True if
the change is worth building, and False if it is not. Unimportant Changes are
accumulated until the build is triggered by an important change. The default
value of None means that all Changes are important.

categories

A list of categories of changes that this scheduler will respond to. If this is
specified, then any non-matching changes are ignored.

Example:

from buildbot import scheduler

quick = scheduler.Scheduler(name="quick",

branch=None,

treeStableTimer=60,

builderNames=["quick-linux", "quick-netbsd"])

full = scheduler.Scheduler(name="full",

branch=None,

treeStableTimer=5*60,

builderNames=["full-linux", "full-netbsd", "full-OSX"])

c[’schedulers’] = [quick, full]

In this example, the two “quick” builders are triggered 60 seconds after the tree has been
changed. The “full” builds do not run quite so quickly (they wait 5 minutes), so hopefully
if the quick builds fail due to a missing file or really simple typo, the developer can discover
and fix the problem before the full builds are started. Both Schedulers only pay attention
to the default branch: any changes on other branches are ignored by these Schedulers. Each
Scheduler triggers a different set of Builders, referenced by name.

Chapter 4: Configuration 34

4.5.2 AnyBranchScheduler

This scheduler uses a tree-stable-timer like the default one, but follows multiple branches
at once. Each branch gets a separate timer.

The arguments to this scheduler are:

name

builderNames

properties

branches This Scheduler will pay attention to any number of branches, ignoring Changes
that occur on other branches. Branches are specified just as for the Scheduler

class.

treeStableTimer

The Scheduler will wait for this many seconds before starting the build. If new
changes are made during this interval, the timer will be restarted, so really
the build will be started after a change and then after this many seconds of
inactivity.

fileIsImportant

A callable which takes one argument, a Change instance, and returns True if
the change is worth building, and False if it is not. Unimportant Changes are
accumulated until the build is triggered by an important change. The default
value of None means that all Changes are important.

categories

A list of categories of changes that this scheduler will respond to. If this is
specified, then any non-matching changes are ignored.

4.5.3 Dependent Scheduler

It is common to wind up with one kind of build which should only be performed if the same
source code was successfully handled by some other kind of build first. An example might
be a packaging step: you might only want to produce .deb or RPM packages from a tree
that was known to compile successfully and pass all unit tests. You could put the packaging
step in the same Build as the compile and testing steps, but there might be other reasons to
not do this (in particular you might have several Builders worth of compiles/tests, but only
wish to do the packaging once). Another example is if you want to skip the “full” builds
after a failing “quick” build of the same source code. Or, if one Build creates a product
(like a compiled library) that is used by some other Builder, you’d want to make sure the
consuming Build is run after the producing one.

You can use “Dependencies” to express this relationship to the Buildbot. There is
a special kind of Scheduler named scheduler.Dependent that will watch an “upstream”
Scheduler for builds to complete successfully (on all of its Builders). Each time that happens,
the same source code (i.e. the same SourceStamp) will be used to start a new set of builds, on
a different set of Builders. This “downstream” scheduler doesn’t pay attention to Changes
at all. It only pays attention to the upstream scheduler.

If the build fails on any of the Builders in the upstream set, the downstream builds will
not fire. Note that, for SourceStamps generated by a ChangeSource, the revision is None,

Chapter 4: Configuration 35

meaning HEAD. If any changes are committed between the time the upstream scheduler
begins its build and the time the dependent scheduler begins its build, then those changes
will be included in the downstream build. See the see Section 4.5.7 [Triggerable Scheduler],
page 37 for a more flexible dependency mechanism that can avoid this problem.

The keyword arguments to this scheduler are:

name

builderNames

properties

upstream The upstream scheduler to watch. Note that this is an “instance”, not the name
of the scheduler.

Example:

from buildbot import scheduler

tests = scheduler.Scheduler("just-tests", None, 5*60,

["full-linux", "full-netbsd", "full-OSX"])

package = scheduler.Dependent(name="build-package",

upstream=tests, # <- no quotes!

builderNames=["make-tarball", "make-deb", "make-rpm"])

c[’schedulers’] = [tests, package]

4.5.4 Periodic Scheduler

This simple scheduler just triggers a build every N seconds.

The arguments to this scheduler are:

name

builderNames

properties

periodicBuildTimer

The time, in seconds, after which to start a build.

Example:

from buildbot import scheduler

nightly = scheduler.Periodic(name="nightly",

builderNames=["full-solaris"],

periodicBuildTimer=24*60*60)

c[’schedulers’] = [nightly]

The Scheduler in this example just runs the full solaris build once per day. Note that
this Scheduler only lets you control the time between builds, not the absolute time-of-day of
each Build, so this could easily wind up a “daily” or “every afternoon” scheduler depending
upon when it was first activated.

4.5.5 Nightly Scheduler

This is highly configurable periodic build scheduler, which triggers a build at particular
times of day, week, month, or year. The configuration syntax is very similar to the well-
known crontab format, in which you provide values for minute, hour, day, and month (some
of which can be wildcards), and a build is triggered whenever the current time matches the

Chapter 4: Configuration 36

given constraints. This can run a build every night, every morning, every weekend, alternate
Thursdays, on your boss’s birthday, etc.

Pass some subset of minute, hour, dayOfMonth, month, and dayOfWeek; each may be a
single number or a list of valid values. The builds will be triggered whenever the current
time matches these values. Wildcards are represented by a ’*’ string. All fields default to a
wildcard except ’minute’, so with no fields this defaults to a build every hour, on the hour.
The full list of parameters is:

name

builderNames

properties

branch The branch to build, just as for Scheduler.

minute The minute of the hour on which to start the build. This defaults to 0, meaning
an hourly build.

hour The hour of the day on which to start the build, in 24-hour notation. This
defaults to *, meaning every hour.

month The month in which to start the build, with January = 1. This defaults to *,
meaning every month.

dayOfWeek

The day of the week to start a build, with Monday = 0. This defauls to *,
meaning every day of the week.

onlyIfChanged

If this is true, then builds will not be scheduled at the designated time unless
the source has changed since the previous build.

For example, the following master.cfg clause will cause a build to be started every night
at 3:00am:

s = scheduler.Nightly(name=’nightly’,

builderNames=[’builder1’, ’builder2’],

hour=3,

minute=0)

This scheduler will perform a build each monday morning at 6:23am and again at 8:23am,
but only if someone has committed code in the interim:

s = scheduler.Nightly(name=’BeforeWork’,

builderNames=[’builder1’],

dayOfWeek=0,

hour=[6,8],

minute=23,

onlyIfChanged=True)

The following runs a build every two hours, using Python’s range function:

s = Nightly(name=’every2hours’,

builderNames=[’builder1’],

hour=range(0, 24, 2))

Finally, this example will run only on December 24th:

Chapter 4: Configuration 37

s = Nightly(name=’SleighPreflightCheck’,

builderNames=[’flying_circuits’, ’radar’],

month=12,

dayOfMonth=24,

hour=12,

minute=0)

4.5.6 Try Schedulers

This scheduler allows developers to use the buildbot try command to trigger builds of
code they have not yet committed. See Section 8.2.3 [try], page 121 for complete details.

Two implementations are available: Try_Jobdir and Try_Userpass. The former mon-
itors a job directory, specified by the jobdir parameter, while the latter listens for PB
connections on a specific port, and authenticates against userport.

4.5.7 Triggerable Scheduler

The Triggerable scheduler waits to be triggered by a Trigger step (see Section 6.1.10
[Triggering Schedulers], page 87) in another build. That step can optionally wait for the
scheduler’s builds to complete. This provides two advantages over Dependent schedulers.
First, the same scheduler can be triggered from multiple builds. Second, the ability to
wait for a Triggerable’s builds to complete provides a form of "subroutine call", where one
or more builds can "call" a scheduler to perform some work for them, perhaps on other
buildslaves.

The parameters are just the basics:

name

builderNames

properties

This class is only useful in conjunction with the Trigger step. Here is a fully-worked
example:

from buildbot import scheduler

from buildbot.process import factory

from buildbot.steps import trigger

checkin = scheduler.Scheduler(name="checkin",

branch=None,

treeStableTimer=5*60,

builderNames=["checkin"])

nightly = scheduler.Nightly(name=’nightly’,

builderNames=[’nightly’],

hour=3,

minute=0)

mktarball = scheduler.Triggerable(name="mktarball",

builderNames=["mktarball"])

build = scheduler.Triggerable(name="build-all-platforms",

builderNames=["build-all-platforms"])

Chapter 4: Configuration 38

test = scheduler.Triggerable(name="distributed-test",

builderNames=["distributed-test"])

package = scheduler.Triggerable(name="package-all-platforms",

builderNames=["package-all-platforms"])

c[’schedulers’] = [mktarball, checkin, nightly, build, test, package]

on checkin, make a tarball, build it, and test it

checkin_factory = factory.BuildFactory()

checkin_factory.addStep(trigger.Trigger(schedulerNames=[’mktarball’],

waitForFinish=True))

checkin_factory.addStep(trigger.Trigger(schedulerNames=[’build-all-platforms’],

waitForFinish=True))

checkin_factory.addStep(trigger.Trigger(schedulerNames=[’distributed-test’],

waitForFinish=True))

and every night, make a tarball, build it, and package it

nightly_factory = factory.BuildFactory()

nightly_factory.addStep(trigger.Trigger(schedulerNames=[’mktarball’],

waitForFinish=True))

nightly_factory.addStep(trigger.Trigger(schedulerNames=[’build-all-platforms’],

waitForFinish=True))

nightly_factory.addStep(trigger.Trigger(schedulerNames=[’package-all-platforms’],

waitForFinish=True))

4.6 Merging BuildRequests

By default, buildbot merges BuildRequests that have the compatible SourceStamps. This
behaviour can be customized with the c[’mergeRequests’] configuration key. This key
specifies a function which is called with three arguments: a Builder and two BuildRequest

objects. It should return true if the requests can be merged. For example:

def mergeRequests(builder, req1, req2):

"""Don’t merge buildrequest at all"""

return False

c[’mergeRequests’] = mergeRequests

In many cases, the details of the SourceStamps and BuildRequests are important. In this
example, only BuildRequests with the same "reason" are merged; thus developers forcing
builds for different reasons will see distinct builds.

def mergeRequests(builder, req1, req2):

if req1.source.canBeMergedWith(req2.source) and req1.reason == req2.reason:

return True

return False

c[’mergeRequests’] = mergeRequests

Chapter 4: Configuration 39

4.7 Prioritizing Builders

By default, buildbot will attempt to start builds on builders in order from the builder
with the oldest pending request to the newest. This behaviour can be customized with the
c[’prioritizeBuilders’] configuration key. This key specifies a function which is called
with two arguments: a BuildMaster and a list of Builder objects. It should return a list
of Builder objects in the desired order. It may also remove items from the list if builds
should not be started on those builders.

def prioritizeBuilders(buildmaster, builders):

"""Prioritize builders. ’finalRelease’ builds have the highest

priority, so they should be built before running tests, or

creating builds."""

builderPriorities = {

"finalRelease": 0,

"test": 1,

"build": 2,

}

builders.sort(key=lambda b: builderPriorities.get(b.name, 0))

return builders

c[’prioritizeBuilders’] = prioritizeBuilders

4.8 Setting the slaveport

The buildmaster will listen on a TCP port of your choosing for connections from buildslaves.
It can also use this port for connections from remote Change Sources, status clients, and
debug tools. This port should be visible to the outside world, and you’ll need to tell your
buildslave admins about your choice.

It does not matter which port you pick, as long it is externally visible, however you
should probably use something larger than 1024, since most operating systems don’t allow
non-root processes to bind to low-numbered ports. If your buildmaster is behind a firewall
or a NAT box of some sort, you may have to configure your firewall to permit inbound
connections to this port.

c[’slavePortnum’] = 10000

c[’slavePortnum’] is a strports specification string, defined in the
twisted.application.strports module (try pydoc twisted.application.strports to
get documentation on the format). This means that you can have the buildmaster listen
on a localhost-only port by doing:

c[’slavePortnum’] = "tcp:10000:interface=127.0.0.1"

This might be useful if you only run buildslaves on the same machine, and they are all
configured to contact the buildmaster at localhost:10000.

4.9 Buildslave Specifiers

The c[’slaves’] key is a list of known buildslaves. In the common case, each buildslave is
defined by an instance of the BuildSlave class. It represents a standard, manually started
machine that will try to connect to the buildbot master as a slave. Contrast these with the

Chapter 4: Configuration 40

"on-demand" latent buildslaves, such as the Amazon Web Service Elastic Compute Cloud
latent buildslave discussed below.

The BuildSlave class is instantiated with two values: (slavename, slavepassword). These
are the same two values that need to be provided to the buildslave administrator when they
create the buildslave.

The slavenames must be unique, of course. The password exists to prevent evildoers from
interfering with the buildbot by inserting their own (broken) buildslaves into the system
and thus displacing the real ones.

Buildslaves with an unrecognized slavename or a non-matching password will be rejected
when they attempt to connect, and a message describing the problem will be put in the log
file (see Section 2.7 [Logfiles], page 14).

from buildbot.buildslave import BuildSlave

c[’slaves’] = [BuildSlave(’bot-solaris’, ’solarispasswd’)

BuildSlave(’bot-bsd’, ’bsdpasswd’)

]

BuildSlave objects can also be created with an optional properties argument, a dic-
tionary specifying properties that will be available to any builds performed on this slave.
For example:

from buildbot.buildslave import BuildSlave

c[’slaves’] = [BuildSlave(’bot-solaris’, ’solarispasswd’,

properties={’os’:’solaris’}),

]

The BuildSlave constructor can also take an optional max_builds parameter to limit
the number of builds that it will execute simultaneously:

from buildbot.buildslave import BuildSlave

c[’slaves’] = [BuildSlave("bot-linux", "linuxpassword", max_builds=2)]

Historical note: in buildbot-0.7.5 and earlier, the c[’bots’] key was used instead, and
it took a list of (name, password) tuples. This key is accepted for backwards compatibility,
but is deprecated as of 0.7.6 and will go away in some future release.

4.9.1 When Buildslaves Go Missing

Sometimes, the buildslaves go away. One very common reason for this is when the buildslave
process is started once (manually) and left running, but then later the machine reboots and
the process is not automatically restarted.

If you’d like to have the administrator of the buildslave (or other people) be notified by
email when the buildslave has been missing for too long, just add the notify_on_missing=
argument to the BuildSlave definition:

c[’slaves’] = [BuildSlave(’bot-solaris’, ’solarispasswd’,

notify_on_missing="bob@example.com"),

]

By default, this will send email when the buildslave has been disconnected for more than
one hour. Only one email per connection-loss event will be sent. To change the timeout,
use missing_timeout= and give it a number of seconds (the default is 3600).

Chapter 4: Configuration 41

You can have the buildmaster send email to multiple recipients: just provide a list of
addresses instead of a single one:

c[’slaves’] = [BuildSlave(’bot-solaris’, ’solarispasswd’,

notify_on_missing=["bob@example.com",

"alice@example.org"],

missing_timeout=300, # notify after 5 minutes

),

]

The email sent this way will use a MailNotifier (see Section 7.2 [MailNotifier], page 112)
status target, if one is configured. This provides a way for you to control the “from” address
of the email, as well as the relayhost (aka “smarthost”) to use as an SMTP server. If no
MailNotifier is configured on this buildmaster, the buildslave-missing emails will be sent
using a default configuration.

Note that if you want to have a MailNotifier for buildslave-missing emails but not for
regular build emails, just create one with builders=[], as follows:

from buildbot.status import mail

m = mail.MailNotifier(fromaddr="buildbot@localhost", builders=[],

relayhost="smtp.example.org")

c[’status’].append(m)

c[’slaves’] = [BuildSlave(’bot-solaris’, ’solarispasswd’,

notify_on_missing="bob@example.com"),

]

4.10 On-Demand ("Latent") Buildslaves

The standard buildbot model has slaves started manually. The previous section described
how to configure the master for this approach.

Another approach is to let the buildbot master start slaves when builds are ready, on-
demand. Thanks to services such as Amazon Web Services’ Elastic Compute Cloud ("AWS
EC2"), this is relatively easy to set up, and can be very useful for some situations.

The buildslaves that are started on-demand are called "latent" buildslaves. As of this
writing, buildbot ships with an abstract base class for building latent buildslaves, and a
concrete implementation for AWS EC2.

4.10.1 Amazon Web Services Elastic Compute Cloud ("AWS
EC2")

AWS EC2 is a web service that allows you to start virtual machines in an Amazon data
center. Please see their website for details, incuding costs. Using the AWS EC2 latent
buildslaves involves getting an EC2 account with AWS and setting up payment; customiz-
ing one or more EC2 machine images ("AMIs") on your desired operating system(s) and
publishing them (privately if needed); and configuring the buildbot master to know how to
start your customized images for "substantiating" your latent slaves.

4.10.1.1 Get an AWS EC2 Account

To start off, to use the AWS EC2 latent buildslave, you need to get an AWS developer
account and sign up for EC2. These instructions may help you get started:

Chapter 4: Configuration 42

• Go to http://aws.amazon.com/ and click to "Sign Up Now" for an AWS account.

• Once you are logged into your account, you need to sign up for EC2. Instructions for
how to do this have changed over time because Amazon changes their website, so the
best advice is to hunt for it. After signing up for EC2, it may say it wants you to
upload an x.509 cert. You will need this to create images (see below) but it is not
technically necessary for the buildbot master configuration.

• You must enter a valid credit card before you will be able to use EC2. Do that under
’Payment Method’.

• Make sure you’re signed up for EC2 by going to ’Your Account’->’Account Activity’
and verifying EC2 is listed.

4.10.1.2 Create an AMI

Now you need to create an AMI and configure the master. You may need to run through
this cycle a few times to get it working, but these instructions should get you started.

Creating an AMI is out of the scope of this document. The EC2 Getting Started Guide
is a good resource for this task. Here are a few additional hints.

• When an instance of the image starts, it needs to automatically start a buildbot slave
that connects to your master (to create a buildbot slave, see Section 2.5 [Creating
a buildslave], page 10; to make a daemon, see Section 2.6 [Launching the daemons],
page 13).

• You may want to make an instance of the buildbot slave, configure it as a standard
buildslave in the master (i.e., not as a latent slave), and test and debug it that way
before you turn it into an AMI and convert to a latent slave in the master.

4.10.1.3 Configure the Master with an EC2LatentBuildSlave

Now let’s assume you have an AMI that should work with the EC2LatentBuildSlave. It’s
now time to set up your buildbot master configuration.

You will need some information from your AWS account: the "Access Key Id" and the
"Secret Access Key". If you’ve built the AMI yourself, you probably already are familiar
with these values. If you have not, and someone has given you access to an AMI, these
hints may help you find the necessary values:

• While logged into your AWS account, find the "Access Identifiers" link (either on the
left, or via "Your Account" -> "Access Identifiers".

• On the page, you’ll see alphanumeric values for "Your Access Key Id:" and "Your
Secret Access Key:". Make a note of these. Later on, we’ll call the first one your
"identifier" and the second one your "secret identifier."

When creating an EC2LatentBuildSlave in the buildbot master configuration, the first
three arguments are required. The name and password are the first two arguments, and
work the same as with normal buildslaves. The next argument specifies the type of the
EC2 virtual machine (available options as of this writing include "m1.small", "m1.large",
’m1.xlarge", "c1.medium", and "c1.xlarge"; see the EC2 documentation for descriptions of
these machines).

Here is the simplest example of configuring an EC2 latent buildslave. It specifies all
necessary remaining values explicitly in the instantiation.

Chapter 4: Configuration 43

from buildbot.ec2buildslave import EC2LatentBuildSlave

c[’slaves’] = [EC2LatentBuildSlave(’bot1’, ’sekrit’, ’m1.large’,

ami=’ami-12345’,

identifier=’publickey’,

secret_identifier=’privatekey’

)]

The "ami" argument specifies the AMI that the master should start. The "identifier"
argument specifies the AWS "Access Key Id," and the "secret identifier" specifies the AWS
"Secret Access Key." Both the AMI and the account information can be specified in alter-
nate ways.

Note that whoever has your identifier and secret identifier values can request AWS work
charged to your account, so these values need to be carefully protected. Another way to
specify these access keys is to put them in a separate file. You can then make the access
privileges stricter for this separate file, and potentially let more people read your main
configuration file.

By default, you can make an .ec2 directory in the home folder of the user running the
buildbot master. In that directory, create a file called aws id. The first line of that file
should be your access key id; the second line should be your secret access key id. Then you
can instantiate the build slave as follows.

from buildbot.ec2buildslave import EC2LatentBuildSlave

c[’slaves’] = [EC2LatentBuildSlave(’bot1’, ’sekrit’, ’m1.large’,

ami=’ami-12345’)]

If you want to put the key information in another file, use the "aws id file path" initial-
ization argument.

Previous examples used a particular AMI. If the Buildbot master will be deployed in
a process-controlled environment, it may be convenient to specify the AMI more flexibly.
Rather than specifying an individual AMI, specify one or two AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and manifest name)
will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account number
(the 12 digit number, usually rendered in AWS with hyphens like "1234-5678-9012", should
be entered as in integer).

from buildbot.ec2buildslave import EC2LatentBuildSlave

bot1 = EC2LatentBuildSlave(’bot1’, ’sekrit’, ’m1.large’,

valid_ami_owners=[11111111111,

22222222222],

identifier=’publickey’,

secret_identifier=’privatekey’

)

The other available filter is to provide a regular expression string that will be matched
against each AMI’s location (the S3 bucket and manifest name).

from buildbot.ec2buildslave import EC2LatentBuildSlave

bot1 = EC2LatentBuildSlave(

’bot1’, ’sekrit’, ’m1.large’,

Chapter 4: Configuration 44

valid_ami_location_regex=r’buildbot\-.*/image.manifest.xml’,

identifier=’publickey’, secret_identifier=’privatekey’)

The regular expression can specify a group, which will be preferred for the sorting. Only
the first group is used; subsequent groups are ignored.

from buildbot.ec2buildslave import EC2LatentBuildSlave

bot1 = EC2LatentBuildSlave(

’bot1’, ’sekrit’, ’m1.large’,

valid_ami_location_regex=r’buildbot\-.*\-(.*)/image.manifest.xml’,

identifier=’publickey’, secret_identifier=’privatekey’)

If the group can be cast to an integer, it will be. This allows 10 to sort after 1, for
instance.

from buildbot.ec2buildslave import EC2LatentBuildSlave

bot1 = EC2LatentBuildSlave(

’bot1’, ’sekrit’, ’m1.large’,

valid_ami_location_regex=r’buildbot\-.*\-(\d+)/image.manifest.xml’,

identifier=’publickey’, secret_identifier=’privatekey’)

In addition to using the password as a handshake between the master and the slave,
you may want to use a firewall to assert that only machines from a specific IP can connect
as slaves. This is possible with AWS EC2 by using the Elastic IP feature. To configure,
generate a Elastic IP in AWS, and then specify it in your configuration using the "elastic ip"
argument.

from buildbot.ec2buildslave import EC2LatentBuildSlave

c[’slaves’] = [EC2LatentBuildSlave(’bot1’, ’sekrit’, ’m1.large’,

’ami-12345’,

identifier=’publickey’,

secret_identifier=’privatekey’,

elastic_ip=’208.77.188.166’

)]

The EC2LatentBuildSlave supports all other configuration from the standard BuildSlave.
The "missing timeout" and "notify on missing" specify how long to wait for an EC2 in-
stance to attach before considering the attempt to have failed, and email addresses to alert,
respectively. "missing timeout" defaults to 20 minutes.

The "build wait timeout" allows you to specify how long an EC2LatentBuildSlave
should wait after a build for another build before it shuts down the EC2 instance. It
defaults to 10 minutes.

"keypair name" and "security name" allow you to specify different names for these AWS
EC2 values. They both default to "latent buildbot slave".

4.10.2 Dangers with Latent Buildslaves

Any latent build slave that interacts with a for-fee service, such as the EC2LatentBuildSlave,
brings significant risks. As already identified, the configuraton will need access to account
information that, if obtained by a criminal, can be used to charge services to your account.
Also, bugs in the buildbot software may lead to unnecessary charges. In particular, if the
master neglects to shut down an instance for some reason, a virtual machine may be running

Chapter 4: Configuration 45

unnecessarily, charging against your account. Manual and/or automatic (e.g. nagios with
a plugin using a library like boto) double-checking may be appropriate.

A comparitively trivial note is that currently if two instances try to attach to the same
latent buildslave, it is likely that the system will become confused. This should not occur,
unless, for instance, you configure a normal build slave to connect with the authentication
of a latent buildbot. If the situation occurs, stop all attached instances and restart the
master.

4.10.3 Writing New Latent Buildslaves

Writing a new latent buildslave should only require subclassing buildbot.buildslave.AbstractLatentBuildS
and implementing start instance and stop instance.

def start_instance(self):

responsible for starting instance that will try to connect with this

master. Should return deferred. Problems should use an errback. The

callback value can be None, or can be an iterable of short strings to

include in the "substantiate success" status message, such as

identifying the instance that started.

raise NotImplementedError

def stop_instance(self, fast=False):

responsible for shutting down instance. Return a deferred. If ‘fast‘,

we’re trying to shut the master down, so callback as soon as is safe.

Callback value is ignored.

raise NotImplementedError

See buildbot.ec2buildslave.EC2LatentBuildSlave for an example, or see the test
example buildbot.test_slaves.FakeLatentBuildSlave.

4.11 Defining Global Properties

The ’properties’ configuration key defines a dictionary of properties that will be available
to all builds started by the buildmaster:

c[’properties’] = {

’Widget-version’ : ’1.2’,

’release-stage’ : ’alpha’

}

4.12 Defining Builders

The c[’builders’] key is a list of objects giving configuration for the Builders. For
more information, See Section 3.5 [Builder], page 24. The class definition for the builder
configuration is in buildbot.config. In the configuration file, its use looks like:

from buildbot.config import BuilderConfig

c[’builders’] = [

BuilderConfig(name=’quick’, slavenames=[’bot1’, ’bot2’], factory=f_quick),

BuilderConfig(name=’thorough’, slavename=’bot1’, factory=f_thorough),

]

The constructor takes the following keyword arguments:

Chapter 4: Configuration 46

name This specifies the Builder’s name, which is used in status reports.

slavename

slavenames

These arguments specify the buildslave or buildslaves that will be used by this
Builder. All slaves names must appear in the c[’slaves’] list. Each buildslave
can accomodate multiple Builders. The slavenames parameter can be a list of
names, while slavename can specify only one slave.

factory This is a buildbot.process.factory.BuildFactory instance which controls
how the build is performed. Full details appear in their own section, See Chap-
ter 6 [Build Process], page 66. Parameters like the location of the CVS reposi-
tory and the compile-time options used for the build are generally provided as
arguments to the factory’s constructor.

Other optional keys may be set on each Builder:

builddir Specifies the name of a subdirectory (under the base directory) in which every-
thing related to this builder will be placed on the buildmaster. This holds build
status information. If not set, defaults to name with some characters escaped.
Each builder must have a unique build directory.

slavebuilddir

Specifies the name of a subdirectory (under the base directory) in which ev-
erything related to this builder will be placed on the buildslave. This is where
checkouts, compiles, and tests are run. If not set, defaults to builddir. If
a slave is connected to multiple builders that share the same slavebuilddir,
make sure the slave is set to run one build at a time or ensure this is fine to
run multiple builds from the same directory simultaneously.

category If provided, this is a string that identifies a category for the builder to be a part
of. Status clients can limit themselves to a subset of the available categories. A
common use for this is to add new builders to your setup (for a new module, or
for a new buildslave) that do not work correctly yet and allow you to integrate
them with the active builders. You can put these new builders in a test category,
make your main status clients ignore them, and have only private status clients
pick them up. As soon as they work, you can move them over to the active
category.

nextSlave

If provided, this is a function that controls which slave will be assigned future
jobs. The function is passed two arguments, the Builder object which is as-
signing a new job, and a list of BuildSlave objects. The function should return
one of the BuildSlave objects, or None if none of the available slaves should
be used.

nextBuild

If provided, this is a function that controls which build request will be handled
next. The function is passed two arguments, the Builder object which is
assigning a new job, and a list of BuildRequest objects of pending builds. The
function should return one of the BuildRequest objects, or None if none of the
pending builds should be started.

Chapter 4: Configuration 47

locks This argument specifies a list of locks that apply to this builder; See Section 6.2
[Interlocks], page 96.

env A Builder may be given a dictionary of environment variables in this parameter.
The variables are used in see Section 6.1.4 [ShellCommand], page 78 steps in
builds created by this builder. The environment variables will override anything
in the buildslave’s environment. Variables passed directly to a ShellCommand

will override variables of the same name passed to the Builder.

For example, if you a pool of identical slaves it is often easier to manage variables
like PATH from Buildbot rather than manually editing it inside of the slaves’
environment.

f = factory.BuildFactory

f.addStep(ShellCommand(

command=[’bash’, ’./configure’]))

f.addStep(Compile())

c[’builders’] = [

BuilderConfig(name=’test’, factory=f,

slavenames=[’slave1’, ’slave2’, ’slave3’, ’slave4’],

env={’PATH’: ’/opt/local/bin:/opt/app/bin:/usr/local/bin:/usr/bin’})

]

4.13 Defining Status Targets

The Buildmaster has a variety of ways to present build status to various users. Each such
delivery method is a “Status Target” object in the configuration’s status list. To add
status targets, you just append more objects to this list:

c[’status’] = []

from buildbot.status import html

c[’status’].append(html.Waterfall(http_port=8010))

from buildbot.status import mail

m = mail.MailNotifier(fromaddr="buildbot@localhost",

extraRecipients=["builds@lists.example.com"],

sendToInterestedUsers=False)

c[’status’].append(m)

from buildbot.status import words

c[’status’].append(words.IRC(host="irc.example.com", nick="bb",

channels=["#example"]))

Status delivery has its own chapter, See Chapter 7 [Status Delivery], page 105, in which
all the built-in status targets are documented.

4.14 Limiting Memory and Disk Usage

Buildbot stores historical information on disk in the form of "Pickle" files and compressed
logfiles. In a large installation, these can quickly consume disk space, yet in many cases

Chapter 4: Configuration 48

developers never consult this historical information. Four configuration parameters control
the "pruning" of various data, shown here with their default values:

c[’buildHorizon’] = 100

c[’eventHorizon’] = 50

c[’logHorizon’] = 40

c[’buildCacheSize’] = 15

The buildHorizon specifies the minimum number of builds for each builder which should
be kept on disk. The eventHorizon specifies the minumum number of events to keep –
events mostly describe connections and disconnections of slaves, and are seldom helpful to
developers. The logHorizon gives the minimum number of builds for which logs should be
maintained; this parameter must be less than buildHorizon. Builds older than logHorizon

but not older than buildHorizon will maintain their overall status and the status of each
step, but the logfiles will be deleted.

Finally, the buildCacheSize gives the number of builds for each builder which are
cached in memory. This number should be larger than the number of builds required for
commonly-used status displays (the waterfall or grid views), so that those displays do not
miss the cache on a refresh.

4.15 Debug options

If you set c[’debugPassword’], then you can connect to the buildmaster with the diagnos-
tic tool launched by buildbot debugclient MASTER:PORT. From this tool, you can reload
the config file, manually force builds, and inject changes, which may be useful for testing
your buildmaster without actually commiting changes to your repository (or before you
have the Change Sources set up). The debug tool uses the same port number as the slaves
do: c[’slavePortnum’], and is authenticated with this password.

c[’debugPassword’] = "debugpassword"

If you set c[’manhole’] to an instance of one of the classes in buildbot.manhole, you
can telnet or ssh into the buildmaster and get an interactive Python shell, which may be
useful for debugging buildbot internals. It is probably only useful for buildbot developers.
It exposes full access to the buildmaster’s account (including the ability to modify and
delete files), so it should not be enabled with a weak or easily guessable password.

There are three separate Manhole classes. Two of them use SSH, one uses unencrypted
telnet. Two of them use a username+password combination to grant access, one of them
uses an SSH-style ‘authorized_keys’ file which contains a list of ssh public keys.

manhole.AuthorizedKeysManhole

You construct this with the name of a file that contains one SSH public key
per line, just like ‘~/.ssh/authorized_keys’. If you provide a non-absolute
filename, it will be interpreted relative to the buildmaster’s base directory.

manhole.PasswordManhole

This one accepts SSH connections but asks for a username and password when
authenticating. It accepts only one such pair.

Chapter 4: Configuration 49

manhole.TelnetManhole

This accepts regular unencrypted telnet connections, and asks for a user-
name/password pair before providing access. Because this username/password
is transmitted in the clear, and because Manhole access to the buildmaster
is equivalent to granting full shell privileges to both the buildmaster and all
the buildslaves (and to all accounts which then run code produced by the
buildslaves), it is highly recommended that you use one of the SSH manholes
instead.

some examples:

from buildbot import manhole

c[’manhole’] = manhole.AuthorizedKeysManhole(1234, "authorized_keys")

c[’manhole’] = manhole.PasswordManhole(1234, "alice", "mysecretpassword")

c[’manhole’] = manhole.TelnetManhole(1234, "bob", "snoop_my_password_please")

The Manhole instance can be configured to listen on a specific port. You may wish to have
this listening port bind to the loopback interface (sometimes known as “lo0”, “localhost”,
or 127.0.0.1) to restrict access to clients which are running on the same host.

from buildbot.manhole import PasswordManhole

c[’manhole’] = PasswordManhole("tcp:9999:interface=127.0.0.1","admin","passwd")

To have the Manhole listen on all interfaces, use "tcp:9999" or simply 9999. This port
specification uses twisted.application.strports, so you can make it listen on SSL or
even UNIX-domain sockets if you want.

Note that using any Manhole requires that the TwistedConch package be installed, and
that you be using Twisted version 2.0 or later.

The buildmaster’s SSH server will use a different host key than the normal sshd run-
ning on a typical unix host. This will cause the ssh client to complain about a “host key
mismatch”, because it does not realize there are two separate servers running on the same
host. To avoid this, use a clause like the following in your ‘.ssh/config’ file:

Host remotehost-buildbot

HostName remotehost

HostKeyAlias remotehost-buildbot

Port 9999

use ’user’ if you use PasswordManhole and your name is not ’admin’.

if you use AuthorizedKeysManhole, this probably doesn’t matter.

User admin

Chapter 5: Getting Source Code Changes 50

5 Getting Source Code Changes

The most common way to use the Buildbot is centered around the idea of Source Trees:
a directory tree filled with source code of some form which can be compiled and/or tested.
Some projects use languages that don’t involve any compilation step: nevertheless there
may be a build phase where files are copied or rearranged into a form that is suitable for
installation. Some projects do not have unit tests, and the Buildbot is merely helping to
make sure that the sources can compile correctly. But in all of these cases, the thing-being-
tested is a single source tree.

A Version Control System mantains a source tree, and tells the buildmaster when it
changes. The first step of each Build is typically to acquire a copy of some version of this
tree.

This chapter describes how the Buildbot learns about what Changes have occurred. For
more information on VC systems and Changes, see Section 3.1 [Version Control Systems],
page 17.

5.1 Change Sources

Each Buildmaster watches a single source tree. Changes can be provided by a variety of
ChangeSource types, however any given project will typically have only a single Change-
Source active. This section provides a description of all available ChangeSource types and
explains how to set up each of them.

There are a variety of ChangeSources available, some of which are meant to be used
in conjunction with other tools to deliver Change events from the VC repository to the
buildmaster.

• CVSToys This ChangeSource opens a TCP connection from the buildmaster to a wait-
ing FreshCVS daemon that lives on the repository machine, and subscribes to hear
about Changes.

• MaildirSource This one watches a local maildir-format inbox for email sent out by the
repository when a change is made. When a message arrives, it is parsed to create the
Change object. A variety of parsing functions are available to accomodate different
email-sending tools.

• PBChangeSource This ChangeSource listens on a local TCP socket for inbound con-
nections from a separate tool. Usually, this tool would be run on the VC repository
machine in a commit hook. It is expected to connect to the TCP socket and send a
Change message over the network connection. The buildbot sendchange command
is one example of a tool that knows how to send these messages, so you can write a
commit script for your VC system that calls it to deliver the Change. There are other
tools in the contrib/ directory that use the same protocol.

As a quick guide, here is a list of VC systems and the ChangeSources that might be
useful with them. All of these ChangeSources are in the buildbot.changes module.

CVS

• freshcvs.FreshCVSSource (connected via TCP to the freshcvs daemon)

• mail.FCMaildirSource (watching for email sent by a freshcvs daemon)

Chapter 5: Getting Source Code Changes 51

• mail.BonsaiMaildirSource (watching for email sent by Bonsai)

• mail.SyncmailMaildirSource (watching for email sent by syncmail)

• pb.PBChangeSource (listening for connections from buildbot sendchange

run in a loginfo script)

• pb.PBChangeSource (listening for connections from a long-running
contrib/viewcvspoll.py polling process which examines the ViewCVS
database directly

SVN

• pb.PBChangeSource (listening for connections from contrib/svn_

buildbot.py run in a postcommit script)

• pb.PBChangeSource (listening for connections from a long-running
contrib/svn_watcher.py or contrib/svnpoller.py polling process

• mail.SVNCommitEmailMaildirSource (watching for email sent by commit-
email.pl)

• svnpoller.SVNPoller (polling the SVN repository)

Darcs

• pb.PBChangeSource (listening for connections from contrib/darcs_

buildbot.py in a commit script

Mercurial

• pb.PBChangeSource (listening for connections from contrib/hg_

buildbot.py run in an ’incoming’ hook)

• pb.PBChangeSource (listening for connections from buildbot/changes/hgbuildbot.py

run as an in-process ’changegroup’ hook)

Arch/Bazaar

• pb.PBChangeSource (listening for connections from contrib/arch_

buildbot.py run in a commit hook)

Bzr (the newer Bazaar)

• pb.PBChangeSource (listening for connections from contrib/bzr_

buildbot.py run in a post-change-branch-tip or commit hook)

• contrib/bzr_buildbot.py’s BzrPoller (polling the Bzr repository)

Git

• pb.PBChangeSource (listening for connections from contrib/git_

buildbot.py run in the post-receive hook)

Monotone

• pb.PBChangeSource (listening for connections from contrib/monotone-

buildbot-nofification.py (found in the monotone source), run as a
monotone hook)

All VC systems can be driven by a PBChangeSource and the buildbot sendchange tool
run from some form of commit script. If you write an email parsing function, they can also
all be driven by a suitable MaildirSource.

Chapter 5: Getting Source Code Changes 52

5.2 Choosing ChangeSources

The master.cfg configuration file has a dictionary key named BuildmasterConfig[’change_

source’], which holds the active IChangeSource object. The config file will typically
create an object from one of the classes described below and stuff it into this key.

Each buildmaster typically has just a single ChangeSource, since it is only watching a
single source tree. But if, for some reason, you need multiple sources, just set c[’change_
source’] to a list of ChangeSources.. it will accept that too.

s = FreshCVSSourceNewcred(host="host", port=4519,

user="alice", passwd="secret",

prefix="Twisted")

BuildmasterConfig[’change_source’] = [s]

Each source tree has a nominal top. Each Change has a list of filenames, which are
all relative to this top location. The ChangeSource is responsible for doing whatever is
necessary to accomplish this. Most sources have a prefix argument: a partial pathname
which is stripped from the front of all filenames provided to that ChangeSource. Files which
are outside this sub-tree are ignored by the changesource: it does not generate Changes for
those files.

5.3 CVSToys - PBService

The CVSToys (http://purl.net/net/CVSToys) package provides a server which runs on
the machine that hosts the CVS repository it watches. It has a variety of ways to dis-
tribute commit notifications, and offers a flexible regexp-based way to filter out uninterest-
ing changes. One of the notification options is named PBService and works by listening on
a TCP port for clients. These clients subscribe to hear about commit notifications.

The buildmaster has a CVSToys-compatible PBService client built in. There are two
versions of it, one for old versions of CVSToys (1.0.9 and earlier) which used the oldcred

authentication framework, and one for newer versions (1.0.10 and later) which use newcred.
Both are classes in the buildbot.changes.freshcvs package.

FreshCVSSourceNewcred objects are created with the following parameters:

‘host and port’
these specify where the CVSToys server can be reached

‘user and passwd’
these specify the login information for the CVSToys server (freshcvs). These
must match the server’s values, which are defined in the freshCfg configuration
file (which lives in the CVSROOT directory of the repository).

‘prefix’ this is the prefix to be found and stripped from filenames delivered by the
CVSToys server. Most projects live in sub-directories of the main repository,
as siblings of the CVSROOT sub-directory, so typically this prefix is set to that
top sub-directory name.

Example

To set up the freshCVS server, add a statement like the following to your ‘freshCfg’ file:

Chapter 5: Getting Source Code Changes 53

pb = ConfigurationSet([

(None, None, None, PBService(userpass=(’foo’, ’bar’), port=4519)),

])

This will announce all changes to a client which connects to port 4519 using a username
of ’foo’ and a password of ’bar’.

Then add a clause like this to your buildmaster’s ‘master.cfg’:

BuildmasterConfig[’change_source’] = FreshCVSSource("cvs.example.com", 4519,

"foo", "bar",

prefix="glib/")

where "cvs.example.com" is the host that is running the FreshCVS daemon, and "glib"
is the top-level directory (relative to the repository’s root) where all your source code lives.
Most projects keep one or more projects in the same repository (along with CVSROOT/
to hold admin files like loginfo and freshCfg); the prefix= argument tells the buildmaster to
ignore everything outside that directory, and to strip that common prefix from all pathnames
it handles.

5.4 Mail-parsing ChangeSources

Many projects publish information about changes to their source tree by sending an email
message out to a mailing list, frequently named PROJECT-commits or PROJECT-changes.
Each message usually contains a description of the change (who made the change, which
files were affected) and sometimes a copy of the diff. Humans can subscribe to this list to
stay informed about what’s happening to the source tree.

The Buildbot can also be subscribed to a -commits mailing list, and can trigger builds in
response to Changes that it hears about. The buildmaster admin needs to arrange for these
email messages to arrive in a place where the buildmaster can find them, and configure
the buildmaster to parse the messages correctly. Once that is in place, the email parser
will create Change objects and deliver them to the Schedulers (see see Section 4.5 [Change
Sources and Schedulers], page 32) just like any other ChangeSource.

There are two components to setting up an email-based ChangeSource. The first is
to route the email messages to the buildmaster, which is done by dropping them into a
“maildir”. The second is to actually parse the messages, which is highly dependent upon
the tool that was used to create them. Each VC system has a collection of favorite change-
emailing tools, and each has a slightly different format, so each has a different parsing
function. There is a separate ChangeSource variant for each parsing function.

Once you’ve chosen a maildir location and a parsing function, create the change source
and put it in c[’change_source’]:

from buildbot.changes.mail import SyncmailMaildirSource

c[’change_source’] = SyncmailMaildirSource("~/maildir-buildbot",

prefix="/trunk/")

5.4.1 Subscribing the Buildmaster

The recommended way to install the buildbot is to create a dedicated account for the
buildmaster. If you do this, the account will probably have a distinct email address (perhaps
buildmaster@example.org). Then just arrange for this account’s email to be delivered to
a suitable maildir (described in the next section).

Chapter 5: Getting Source Code Changes 54

If the buildbot does not have its own account, “extension addresses” can be used to
distinguish between email intended for the buildmaster and email intended for the rest
of the account. In most modern MTAs, the e.g. foo@example.org account has con-
trol over every email address at example.org which begins with "foo", such that email
addressed to account-foo@example.org can be delivered to a different destination than
account-bar@example.org. qmail does this by using separate .qmail files for the two des-
tinations (‘.qmail-foo’ and ‘.qmail-bar’, with ‘.qmail’ controlling the base address and
‘.qmail-default’ controlling all other extensions). Other MTAs have similar mechanisms.

Thus you can assign an extension address like foo-buildmaster@example.org to the
buildmaster, and retain foo@example.org for your own use.

5.4.2 Using Maildirs

A “maildir” is a simple directory structure originally developed for qmail that allows safe
atomic update without locking. Create a base directory with three subdirectories: “new”,
“tmp”, and “cur”. When messages arrive, they are put into a uniquely-named file (using
pids, timestamps, and random numbers) in “tmp”. When the file is complete, it is atomically
renamed into “new”. Eventually the buildmaster notices the file in “new”, reads and parses
the contents, then moves it into “cur”. A cronjob can be used to delete files in “cur” at
leisure.

Maildirs are frequently created with the maildirmake tool, but a simple mkdir -p

~/MAILDIR/{cur,new,tmp} is pretty much equivalent.

Many modern MTAs can deliver directly to maildirs. The usual .forward or .procmailrc
syntax is to name the base directory with a trailing slash, so something like ~/MAILDIR/ .
qmail and postfix are maildir-capable MTAs, and procmail is a maildir-capable MDA (Mail
Delivery Agent).

For MTAs which cannot put files into maildirs directly, the “safecat” tool can be executed
from a .forward file to accomplish the same thing.

The Buildmaster uses the linux DNotify facility to receive immediate notification when
the maildir’s “new” directory has changed. When this facility is not available, it polls the
directory for new messages, every 10 seconds by default.

5.4.3 Parsing Email Change Messages

The second component to setting up an email-based ChangeSource is to parse the actual
notices. This is highly dependent upon the VC system and commit script in use.

A couple of common tools used to create these change emails are:

‘CVS’

‘CVSToys MailNotifier’
Section 5.4.3.1 [FCMaildirSource], page 55

‘Bonsai notification’
Section 5.4.3.3 [BonsaiMaildirSource], page 56

‘syncmail’
Section 5.4.3.2 [SyncmailMaildirSource], page 55

‘SVN’

Chapter 5: Getting Source Code Changes 55

‘svnmailer’
http://opensource.perlig.de/en/svnmailer/

‘commit-email.pl’
Section 5.4.3.4 [SVNCommitEmailMaildirSource], page 56

‘Bzr’

‘Launchpad’
Section 5.4.3.5 [BzrLaunchpadEmailMaildirSource], page 56

‘Mercurial’

‘NotifyExtension’
http://www.selenic.com/mercurial/wiki/index.cgi/NotifyExtension

‘Git’

‘post-receive-email’
http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-
receive-email;hb=HEAD

The following sections describe the parsers available for each of these tools.

Most of these parsers accept a prefix= argument, which is used to limit the set of
files that the buildmaster pays attention to. This is most useful for systems like CVS and
SVN which put multiple projects in a single repository (or use repository names to indicate
branches). Each filename that appears in the email is tested against the prefix: if the
filename does not start with the prefix, the file is ignored. If the filename does start with
the prefix, that prefix is stripped from the filename before any further processing is done.
Thus the prefix usually ends with a slash.

5.4.3.1 FCMaildirSource

http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/

This parser works with the CVSToys MailNotification action, which will send email
to a list of recipients for each commit. This tends to work better than using /bin/mail

from within the CVSROOT/loginfo file directly, as CVSToys will batch together all files
changed during the same CVS invocation, and can provide more information (like creating
a ViewCVS URL for each file changed).

The Buildbot’s FCMaildirSource knows for to parse these CVSToys messages and turn
them into Change objects. It can be given two parameters: the directory name of the
maildir root, and the prefix to strip.

from buildbot.changes.mail import FCMaildirSource

c[’change_source’] = FCMaildirSource("~/maildir-buildbot")

5.4.3.2 SyncmailMaildirSource

http://sourceforge.net/projects/cvs-syncmail

SyncmailMaildirSource knows how to parse the message format used by the CVS
“syncmail” script.

from buildbot.changes.mail import SyncmailMaildirSource

c[’change_source’] = SyncmailMaildirSource("~/maildir-buildbot")

Chapter 5: Getting Source Code Changes 56

5.4.3.3 BonsaiMaildirSource

http://www.mozilla.org/bonsai.html

BonsaiMaildirSource parses messages sent out by Bonsai, the CVS tree-management
system built by Mozilla.

from buildbot.changes.mail import BonsaiMaildirSource

c[’change_source’] = BonsaiMaildirSource("~/maildir-buildbot")

5.4.3.4 SVNCommitEmailMaildirSource

SVNCommitEmailMaildirSource parses message sent out by the commit-email.pl script,
which is included in the Subversion distribution.

It does not currently handle branches: all of the Change objects that it creates will be
associated with the default (i.e. trunk) branch.

from buildbot.changes.mail import SVNCommitEmailMaildirSource

c[’change_source’] = SVNCommitEmailMaildirSource("~/maildir-buildbot")

5.4.3.5 BzrLaunchpadEmailMaildirSource

BzrLaunchpadEmailMaildirSource parses the mails that are sent to addresses that sub-
scribe to branch revision notifications for a bzr branch hosted on Launchpad.

The branch name defaults to lp:<Launchpad path>. For example lp:~maria-

captains/maria/5.1.

If only a single branch is used, the default branch name can be changed by setting
defaultBranch.

For multiple branches, pass a dictionary as the value of the branchMap option to map
specific repository paths to specific branch names (see example below). The leading lp:

prefix of the path is optional.

The prefix option is not supported (it is silently ignored). Use the branchMap and
defaultBranch instead to assign changes to branches (and just do not subscribe the build-
bot to branches that are not of interest).

The revision number is obtained from the email text. The bzr revision id is not available
in the mails sent by Launchpad. However, it is possible to set the bzr append_revisions_
only option for public shared repositories to avoid new pushes of merges changing the
meaning of old revision numbers.

from buildbot.changes.mail import BzrLaunchpadEmailMaildirSource

bm = { ’lp:~maria-captains/maria/5.1’ : ’5.1’, ’lp:~maria-captains/maria/6.0’ : ’6.0’ }

c[’change_source’] = BzrLaunchpadEmailMaildirSource("~/maildir-buildbot", branchMap = bm)

5.5 PBChangeSource

The last kind of ChangeSource actually listens on a TCP port for clients
to connect and push change notices into the Buildmaster. This is used by
the built-in buildbot sendchange notification tool, as well as the VC-specific
‘contrib/svn_buildbot.py’, ‘contrib/arch_buildbot.py’, ‘contrib/hg_buildbot.py’
tools, and the buildbot.changes.hgbuildbot hook. These tools are run by the repository
(in a commit hook script), and connect to the buildmaster directly each time a file is

Chapter 5: Getting Source Code Changes 57

comitted. This is also useful for creating new kinds of change sources that work on a push

model instead of some kind of subscription scheme, for example a script which is run out
of an email .forward file.

This ChangeSource can be configured to listen on its own TCP port, or it can share the
port that the buildmaster is already using for the buildslaves to connect. (This is possible
because the PBChangeSource uses the same protocol as the buildslaves, and they can be
distinguished by the username attribute used when the initial connection is established). It
might be useful to have it listen on a different port if, for example, you wanted to establish
different firewall rules for that port. You could allow only the SVN repository machine
access to the PBChangeSource port, while allowing only the buildslave machines access to
the slave port. Or you could just expose one port and run everything over it. Note: this

feature is not yet implemented, the PBChangeSource will always share the slave port and

will always have a user name of change, and a passwd of changepw. These limitations will

be removed in the future..

The PBChangeSource is created with the following arguments. All are optional.

‘port’ which port to listen on. If None (which is the default), it shares the port used
for buildslave connections. Not Implemented, always set to None.

‘user and passwd’
The user/passwd account information that the client program must use to con-
nect. Defaults to change and changepw. Not Implemented, user is currently

always set to change, passwd is always set to changepw.

‘prefix’ The prefix to be found and stripped from filenames delivered over the connec-
tion. Any filenames which do not start with this prefix will be removed. If all
the filenames in a given Change are removed, the that whole Change will be
dropped. This string should probably end with a directory separator.

This is useful for changes coming from version control systems that repre-
sent branches as parent directories within the repository (like SVN and Per-
force). Use a prefix of ’trunk/’ or ’project/branches/foobranch/’ to only fol-
low one branch and to get correct tree-relative filenames. Without a pre-
fix, the PBChangeSource will probably deliver Changes with filenames like
‘trunk/foo.c’ instead of just ‘foo.c’. Of course this also depends upon the
tool sending the Changes in (like buildbot sendchange) and what filenames
it is delivering: that tool may be filtering and stripping prefixes at the sending
end.

5.6 P4Source

The P4Source periodically polls a Perforce (http://www.perforce.com/) depot for
changes. It accepts the following arguments:

‘p4base’ The base depot path to watch, without the trailing ’/...’.

‘p4port’ The Perforce server to connect to (as host:port).

‘p4user’ The Perforce user.

‘p4passwd’
The Perforce password.

Chapter 5: Getting Source Code Changes 58

‘p4bin’ An optional string parameter. Specify the location of the perforce command
line binary (p4). You only need to do this if the perforce binary is not in the
path of the buildbot user. Defaults to “p4”.

‘split_file’
A function that maps a pathname, without the leading p4base, to a (branch,
filename) tuple. The default just returns (None, branchfile), which effectively
disables branch support. You should supply a function which understands your
repository structure.

‘pollinterval’
How often to poll, in seconds. Defaults to 600 (10 minutes).

‘histmax’ The maximum number of changes to inspect at a time. If more than this number
occur since the last poll, older changes will be silently ignored.

Example

This configuration uses the P4PORT, P4USER, and P4PASSWD specified in the buildmaster’s
environment. It watches a project in which the branch name is simply the next path
component, and the file is all path components after.

from buildbot.changes import p4poller

s = p4poller.P4Source(p4base=’//depot/project/’,

split_file=lambda branchfile: branchfile.split(’/’,1),

)

c[’change_source’] = s

5.7 BonsaiPoller

The BonsaiPoller periodically polls a Bonsai server. This is a CGI script accessed through
a web server that provides information about a CVS tree, for example the Mozilla bonsai
server at http://bonsai.mozilla.org. Bonsai servers are usable by both humans and
machines. In this case, the buildbot’s change source forms a query which asks about any
files in the specified branch which have changed since the last query.

Please take a look at the BonsaiPoller docstring for details about the arguments it
accepts.

5.8 SVNPoller

The buildbot.changes.svnpoller.SVNPoller is a ChangeSource which periodically polls
a Subversion (http://subversion.tigris.org/) repository for new revisions, by running
the svn log command in a subshell. It can watch a single branch or multiple branches.

SVNPoller accepts the following arguments:

svnurl The base URL path to watch, like svn://svn.twistedmatrix.com/svn/Twisted/trunk,
or http://divmod.org/svn/Divmod/, or even file:///home/svn/Repository/ProjectA/branch

This must include the access scheme, the location of the repository (both
the hostname for remote ones, and any additional directory names necessary
to get to the repository), and the sub-path within the repository’s virtual
filesystem for the project and branch of interest.

Chapter 5: Getting Source Code Changes 59

The SVNPoller will only pay attention to files inside the subdirectory specified
by the complete svnurl.

split_file

A function to convert pathnames into (branch, relative pathname) tuples. Use
this to explain your repository’s branch-naming policy to SVNPoller. This
function must accept a single string and return a two-entry tuple. There are
a few utility functions in buildbot.changes.svnpoller that can be used as a
split_file function, see below for details.

The default value always returns (None, path), which indicates that all files are
on the trunk.

Subclasses of SVNPoller can override the split_file method instead of using
the split_file= argument.

svnuser An optional string parameter. If set, the --user argument will be added to all
svn commands. Use this if you have to authenticate to the svn server before
you can do svn info or svn log commands.

svnpasswd

Like svnuser, this will cause a --password argument to be passed to all svn
commands.

pollinterval

How often to poll, in seconds. Defaults to 600 (checking once every 10 minutes).
Lower this if you want the buildbot to notice changes faster, raise it if you want
to reduce the network and CPU load on your svn server. Please be considerate
of public SVN repositories by using a large interval when polling them.

histmax The maximum number of changes to inspect at a time. Every POLLINTERVAL
seconds, the SVNPoller asks for the last HISTMAX changes and looks through
them for any ones it does not already know about. If more than HISTMAX
revisions have been committed since the last poll, older changes will be silently
ignored. Larger values of histmax will cause more time and memory to be
consumed on each poll attempt. histmax defaults to 100.

svnbin This controls the svn executable to use. If subversion is installed in a weird place
on your system (outside of the buildmaster’s $PATH), use this to tell SVNPoller
where to find it. The default value of “svn” will almost always be sufficient.

revlinktmpl

This parameter allows a link to be provided for each revision (for example, to
websvn or viewvc). These links appear anywhere changes are shown, such as
on build or change pages. The proper form for this parameter is an URL with
the portion that will substitute for a revision number replaced by ”%s”. For
example, ’http://myserver/websvn/revision.php?rev=%s’ could be used to
cause revision links to be created to a websvn repository viewer.

Branches

Each source file that is tracked by a Subversion repository has a fully-qualified SVN URL
in the following form: (REPOURL)(PROJECT-plus-BRANCH)(FILEPATH). When you

Chapter 5: Getting Source Code Changes 60

create the SVNPoller, you give it a svnurl value that includes all of the REPOURL and
possibly some portion of the PROJECT-plus-BRANCH string. The SVNPoller is responsi-
ble for producing Changes that contain a branch name and a FILEPATH (which is relative
to the top of a checked-out tree). The details of how these strings are split up depend upon
how your repository names its branches.

PROJECT/BRANCHNAME/FILEPATH repositories

One common layout is to have all the various projects that share a repository get a single
top-level directory each. Then under a given project’s directory, you get two subdirectories,
one named “trunk” and another named “branches”. Under “branches” you have a bunch of
other directories, one per branch, with names like “1.5.x” and “testing”. It is also common
to see directories like “tags” and “releases” next to “branches” and “trunk”.

For example, the Twisted project has a subversion server on “svn.twistedmatrix.com”
that hosts several sub-projects. The repository is available through a SCHEME of
“svn:”. The primary sub-project is Twisted, of course, with a repository root of
“svn://svn.twistedmatrix.com/svn/Twisted”. Another sub-project is Informant, with
a root of “svn://svn.twistedmatrix.com/svn/Informant”, etc. Inside any checked-out
Twisted tree, there is a file named bin/trial (which is used to run unit test suites).

The trunk for Twisted is in “svn://svn.twistedmatrix.com/svn/Twisted/trunk”,
and the fully-qualified SVN URL for the trunk version of trial would be
“svn://svn.twistedmatrix.com/svn/Twisted/trunk/bin/trial”. The same SVNURL for that
file on a branch named “1.5.x” would be “svn://svn.twistedmatrix.com/svn/Twisted/branches/1.5.x/bin/trial”.

To set up a SVNPoller that watches the Twisted trunk (and nothing else), we would use
the following:

from buildbot.changes.svnpoller import SVNPoller

c[’change_source’] = SVNPoller("svn://svn.twistedmatrix.com/svn/Twisted/trunk")

In this case, every Change that our SVNPoller produces will have .branch=None, to
indicate that the Change is on the trunk. No other sub-projects or branches will be tracked.

If we want our ChangeSource to follow multiple branches, we have to do two things. First
we have to change our svnurl= argument to watch more than just “.../Twisted/trunk”. We
will set it to “.../Twisted” so that we’ll see both the trunk and all the branches. Second, we
have to tell SVNPoller how to split the (PROJECT-plus-BRANCH)(FILEPATH) strings
it gets from the repository out into (BRANCH) and (FILEPATH) pairs.

We do the latter by providing a “split file” function. This function is responsible
for splitting something like “branches/1.5.x/bin/trial” into branch=”branches/1.5.x” and
filepath=”bin/trial”. This function is always given a string that names a file relative to
the subdirectory pointed to by the SVNPoller’s svnurl= argument. It is expected to re-
turn a (BRANCHNAME, FILEPATH) tuple (in which FILEPATH is relative to the branch
indicated), or None to indicate that the file is outside any project of interest.

(note that we want to see “branches/1.5.x” rather than just “1.5.x” because when we
perform the SVN checkout, we will probably append the branch name to the baseURL,
which requires that we keep the “branches” component in there. Other VC schemes use a
different approach towards branches and may not require this artifact.)

If your repository uses this same PROJECT/BRANCH/FILEPATH naming scheme, the
following function will work:

Chapter 5: Getting Source Code Changes 61

def split_file_branches(path):

pieces = path.split(’/’)

if pieces[0] == ’trunk’:

return (None, ’/’.join(pieces[1:]))

elif pieces[0] == ’branches’:

return (’/’.join(pieces[0:2]),

’/’.join(pieces[2:]))

else:

return None

This function is provided as buildbot.changes.svnpoller.split_file_branches for
your convenience. So to have our Twisted-watching SVNPoller follow multiple branches,
we would use this:

from buildbot.changes.svnpoller import SVNPoller, split_file_branches

c[’change_source’] = SVNPoller("svn://svn.twistedmatrix.com/svn/Twisted",

split_file=split_file_branches)

Changes for all sorts of branches (with names like “branches/1.5.x”, and None to indicate
the trunk) will be delivered to the Schedulers. Each Scheduler is then free to use or ignore
each branch as it sees fit.

BRANCHNAME/PROJECT/FILEPATH repositories

Another common way to organize a Subversion repository is to put the branch name at the
top, and the projects underneath. This is especially frequent when there are a number of
related sub-projects that all get released in a group.

For example, Divmod.org hosts a project named “Nevow” as well as one named “Quo-
tient”. In a checked-out Nevow tree there is a directory named “formless” that contains a
python source file named “webform.py”. This repository is accessible via webdav (and thus
uses an “http:” scheme) through the divmod.org hostname. There are many branches in
this repository, and they use a (BRANCHNAME)/(PROJECT) naming policy.

The fully-qualified SVN URL for the trunk version of webform.py is
http://divmod.org/svn/Divmod/trunk/Nevow/formless/webform.py. You can do an
svn co with that URL and get a copy of the latest version. The 1.5.x branch version of this
file would have a URL of http://divmod.org/svn/Divmod/branches/1.5.x/Nevow/formless/webform.py
The whole Nevow trunk would be checked out with http://divmod.org/svn/Divmod/trunk/Nevow,
while the Quotient trunk would be checked out using http://divmod.org/svn/Divmod/trunk/Quotient.

Now suppose we want to have an SVNPoller that only cares about the Nevow trunk.
This case looks just like the PROJECT/BRANCH layout described earlier:

from buildbot.changes.svnpoller import SVNPoller

c[’change_source’] = SVNPoller("http://divmod.org/svn/Divmod/trunk/Nevow")

But what happens when we want to track multiple Nevow branches? We have to point
our svnurl= high enough to see all those branches, but we also don’t want to include
Quotient changes (since we’re only building Nevow). To accomplish this, we must rely
upon the split_file function to help us tell the difference between files that belong to
Nevow and those that belong to Quotient, as well as figuring out which branch each one is
on.

Chapter 5: Getting Source Code Changes 62

from buildbot.changes.svnpoller import SVNPoller

c[’change_source’] = SVNPoller("http://divmod.org/svn/Divmod",

split_file=my_file_splitter)

The my_file_splitter function will be called with repository-relative pathnames like:

trunk/Nevow/formless/webform.py

This is a Nevow file, on the trunk. We want the Change that includes this to
see a filename of formless/webform.py", and a branch of None

branches/1.5.x/Nevow/formless/webform.py

This is a Nevow file, on a branch. We want to get branch=”branches/1.5.x”
and filename=”formless/webform.py”.

trunk/Quotient/setup.py

This is a Quotient file, so we want to ignore it by having my_file_splitter

return None.

branches/1.5.x/Quotient/setup.py

This is also a Quotient file, which should be ignored.

The following definition for my_file_splitter will do the job:

def my_file_splitter(path):

pieces = path.split(’/’)

if pieces[0] == ’trunk’:

branch = None

pieces.pop(0) # remove ’trunk’

elif pieces[0] == ’branches’:

pieces.pop(0) # remove ’branches’

grab branch name

branch = ’branches/’ + pieces.pop(0)

else:

return None # something weird

projectname = pieces.pop(0)

if projectname != ’Nevow’:

return None # wrong project

return (branch, ’/’.join(pieces))

5.9 MercurialHook

Since Mercurial is written in python, the hook script can invoke Buildbot’s sendchange

function directly, rather than having to spawn an external process. This function delivers
the same sort of changes as buildbot sendchange and the various hook scripts in contrib/,
so you’ll need to add a pb.PBChangeSource to your buildmaster to receive these changes.

To set this up, first choose a Mercurial repository that represents your central “official”
source tree. This will be the same repository that your buildslaves will eventually pull
from. Install Buildbot on the machine that hosts this repository, using the same version of
python as Mercurial is using (so that the Mercurial hook can import code from buildbot).
Then add the following to the .hg/hgrc file in that repository, replacing the buildmaster
hostname/portnumber as appropriate for your buildbot:

Chapter 5: Getting Source Code Changes 63

[hooks]

changegroup.buildbot = python:buildbot.changes.hgbuildbot.hook

[hgbuildbot]

master = buildmaster.example.org:9987

(Note that Mercurial lets you define multiple changegroup hooks by giving them
distinct names, like changegroup.foo and changegroup.bar, which is why we use
changegroup.buildbot in this example. There is nothing magical about the “buildbot”
suffix in the hook name. The [hgbuildbot] section is special, however, as it is the only
section that the buildbot hook pays attention to.)

Also note that this runs as a changegroup hook, rather than as an incoming hook. The
changegroup hook is run with multiple revisions at a time (say, if multiple revisions are
being pushed to this repository in a single hg push command), whereas the incoming hook
is run with just one revision at a time. The hgbuildbot.hook function will only work with
the changegroup hook.

The [hgbuildbot] section has two other parameters that you might specify, both of
which control the name of the branch that is attached to the changes coming from this
hook.

One common branch naming policy for Mercurial repositories is to use it just like Darcs:
each branch goes into a separate repository, and all the branches for a single project share
a common parent directory. For example, you might have ‘/var/repos/PROJECT/trunk/’
and ‘/var/repos/PROJECT/release’. To use this style, use the branchtype = dirname

setting, which simply uses the last component of the repository’s enclosing directory as the
branch name:

[hgbuildbot]

master = buildmaster.example.org:9987

branchtype = dirname

Another approach is to use Mercurial’s built-in branches (the kind created with hg

branch and listed with hg branches). This feature associates persistent names with partic-
ular lines of descent within a single repository. (note that the buildbot source.Mercurial
checkout step does not yet support this kind of branch). To have the commit hook deliver
this sort of branch name with the Change object, use branchtype = inrepo:

[hgbuildbot]

master = buildmaster.example.org:9987

branchtype = inrepo

Finally, if you want to simply specify the branchname directly, for all changes, use branch
= BRANCHNAME. This overrides branchtype:

[hgbuildbot]

master = buildmaster.example.org:9987

branch = trunk

If you use branch= like this, you’ll need to put a separate .hgrc in each repository. If you
use branchtype=, you may be able to use the same .hgrc for all your repositories, stored in
‘~/.hgrc’ or ‘/etc/mercurial/hgrc’.

Chapter 5: Getting Source Code Changes 64

5.10 Bzr Hook

Bzr is also written in Python, and the Bzr hook depends on Twisted to send the changes.

To install, put contrib/bzr_buildbot.py in one of your plugins locations a bzr plu-
gins directory (e.g., ~/.bazaar/plugins). Then, in one of your bazaar conf files (e.g.,
~/.bazaar/locations.conf), set the location you want to connect with buildbot with
these keys:

buildbot_on

one of ’commit’, ’push, or ’change’. Turns the plugin on to report changes via
commit, changes via push, or any changes to the trunk. ’change’ is recom-
mended.

buildbot_server

(required to send to a buildbot master) the URL of the buildbot master to
which you will connect (as of this writing, the same server and port to which
slaves connect).

buildbot_port

(optional, defaults to 9989) the port of the buildbot master to which you will
connect (as of this writing, the same server and port to which slaves connect)

buildbot_pqm

(optional, defaults to not pqm) Normally, the user that commits the revision is
the user that is responsible for the change. When run in a pqm (Patch Queue
Manager, see https://launchpad.net/pqm) environment, the user that commits
is the Patch Queue Manager, and the user that committed the *parent* revision
is responsible for the change. To turn on the pqm mode, set this value to any
of (case-insensitive) "Yes", "Y", "True", or "T".

buildbot_dry_run

(optional, defaults to not a dry run) Normally, the post-commit hook will at-
tempt to communicate with the configured buildbot server and port. If this
parameter is included and any of (case-insensitive) "Yes", "Y", "True", or
"T", then the hook will simply print what it would have sent, but not attempt
to contact the buildbot master.

buildbot_send_branch_name

(optional, defaults to not sending the branch name) If your buildbot’s bzr source
build step uses a repourl, do *not* turn this on. If your buildbot’s bzr build
step uses a baseURL, then you may set this value to any of (case-insensitive)
"Yes", "Y", "True", or "T" to have the buildbot master append the branch
name to the baseURL.

When buildbot no longer has a hardcoded password, it will be a configuration option
here as well.

Here’s a simple example that you might have in your ~/.bazaar/locations.conf.

[chroot-*:///var/local/myrepo/mybranch]

buildbot_on = change

buildbot_server = localhost

Chapter 5: Getting Source Code Changes 65

5.11 Bzr Poller

If you cannot insert a Bzr hook in the server, you can use the Bzr Poller. To use, put
contrib/bzr_buildbot.py somewhere that your buildbot configuration can import it.
Even putting it in the same directory as the master.cfg should work. Install the poller
in the buildbot configuration as with any other change source. Minimally, provide a URL
that you want to poll (bzr://, bzr+ssh://, or lp:), though make sure the buildbot user has
necessary privileges. You may also want to specify these optional values.

poll_interval

The number of seconds to wait between polls. Defaults to 10 minutes.

branch_name

Any value to be used as the branch name. Defaults to None, or specify a string,
or specify the constants from bzr_buildbot.py SHORT or FULL to get the
short branch name or full branch address.

blame_merge_author

normally, the user that commits the revision is the user that is respon-
sible for the change. When run in a pqm (Patch Queue Manager, see
https://launchpad.net/pqm) environment, the user that commits is the Patch
Queue Manager, and the user that committed the merged, *parent* revision is
responsible for the change. set this value to True if this is pointed against a
PQM-managed branch.

Chapter 6: Build Process 66

6 Build Process

A Build object is responsible for actually performing a build. It gets access to a remote
SlaveBuilder where it may run commands, and a BuildStatus object where it must emit
status events. The Build is created by the Builder’s BuildFactory.

The default Build class is made up of a fixed sequence of BuildSteps, executed one
after another until all are complete (or one of them indicates that the build should be
halted early). The default BuildFactory creates instances of this Build class with a list of
BuildSteps, so the basic way to configure the build is to provide a list of BuildSteps to
your BuildFactory.

More complicated Build subclasses can make other decisions: execute some steps only
if certain files were changed, or if certain previous steps passed or failed. The base class has
been written to allow users to express basic control flow without writing code, but you can
always subclass and customize to achieve more specialized behavior.

6.1 Build Steps

BuildSteps are usually specified in the buildmaster’s configuration file, in a list that goes
into the BuildFactory. The BuildStep instances in this list are used as templates to
construct new independent copies for each build (so that state can be kept on the BuildStep
in one build without affecting a later build). Each BuildFactory can be created with a list
of steps, or the factory can be created empty and then steps added to it using the addStep

method:

from buildbot.steps import source, shell

from buildbot.process import factory

f = factory.BuildFactory()

f.addStep(source.SVN(svnurl="http://svn.example.org/Trunk/"))

f.addStep(shell.ShellCommand(command=["make", "all"]))

f.addStep(shell.ShellCommand(command=["make", "test"]))

In earlier versions (0.7.5 and older), these steps were specified with a tuple of (step class,
keyword arguments). Steps can still be specified this way, but the preferred form is to pass
actual BuildStep instances to addStep, because that gives the BuildStep class a chance
to do some validation on the arguments.

If you have a common set of steps which are used in several factories, the addSteps

method may be handy. It takes an iterable of BuildStep instances.

setup_steps = [

source.SVN(svnurl="http://svn.example.org/Trunk/")

shell.ShellCommand(command="./setup")

]

quick = factory.BuildFactory()

quick.addSteps(setup_steps)

quick.addStep(shell.shellCommand(command="make quick"))

The rest of this section lists all the standard BuildStep objects available for use in a
Build, and the parameters which can be used to control each.

Chapter 6: Build Process 67

6.1.1 Common Parameters

The standard Build runs a series of BuildSteps in order, only stopping when it runs out
of steps or if one of them requests that the build be halted. It collects status information
from each one to create an overall build status (of SUCCESS, WARNINGS, or FAILURE).

All BuildSteps accept some common parameters. Some of these control how their in-
dividual status affects the overall build. Others are used to specify which Locks (see see
Section 6.2 [Interlocks], page 96) should be acquired before allowing the step to run.

Arguments common to all BuildStep subclasses:

name the name used to describe the step on the status display. It is also used to give
a name to any LogFiles created by this step.

haltOnFailure

if True, a FAILURE of this build step will cause the build to halt immediately.
Steps with alwaysRun=True are still run. Generally speaking, haltOnFailure
implies flunkOnFailure (the default for most BuildSteps). In some cases, par-
ticularly series of tests, it makes sense to haltOnFailure if something fails early
on but not flunkOnFailure. This can be achieved with haltOnFailure=True,
flunkOnFailure=False.

flunkOnWarnings

when True, a WARNINGS or FAILURE of this build step will mark the overall
build as FAILURE. The remaining steps will still be executed.

flunkOnFailure

when True, a FAILURE of this build step will mark the overall build as a
FAILURE. The remaining steps will still be executed.

warnOnWarnings

when True, a WARNINGS or FAILURE of this build step will mark the overall
build as having WARNINGS. The remaining steps will still be executed.

warnOnFailure

when True, a FAILURE of this build step will mark the overall build as having
WARNINGS. The remaining steps will still be executed.

alwaysRun

if True, this build step will always be run, even if a previous buildstep with
haltOnFailure=True has failed.

doStepIf A step can be configured to only run under certain conditions. To do this, set
the step’s doStepIf to a boolean value, or to a function that returns a boolean
value. If the value or function result is false, then the step will return SKIPPED
without doing anything. Oherwise, the step will be executed normally. If you
set doStepIf to a function, that function should accept one parameter, which
will be the Step object itself.

locks a list of Locks (instances of buildbot.locks.SlaveLock or
buildbot.locks.MasterLock) that should be acquired before start-
ing this Step. The Locks will be released when the step is complete. Note that
this is a list of actual Lock instances, not names. Also note that all Locks
must have unique names.

Chapter 6: Build Process 68

6.1.2 Using Build Properties

Build properties are a generalized way to provide configuration information to build steps;
see Section 3.7 [Build Properties], page 27.

Some build properties are inherited from external sources – global properties, schedulers,
or buildslaves. Some build properties are set when the build starts, such as the SourceStamp
information. Other properties can be set by BuildSteps as they run, for example the various
Source steps will set the got_revision property to the source revision that was actually
checked out (which can be useful when the SourceStamp in use merely requested the “latest
revision”: got_revision will tell you what was actually built).

In custom BuildSteps, you can get and set the build properties with the
getProperty/setProperty methods. Each takes a string for the name of the property,
and returns or accepts an arbitrary1 object. For example:

class MakeTarball(ShellCommand):

def start(self):

if self.getProperty("os") == "win":

self.setCommand([...]) # windows-only command

else:

self.setCommand([...]) # equivalent for other systems

ShellCommand.start(self)

WithProperties

You can use build properties in ShellCommands by using the WithProperties wrapper
when setting the arguments of the ShellCommand. This interpolates the named build prop-
erties into the generated shell command. Most step parameters accept WithProperties.
Please file bugs for any parameters which do not.

from buildbot.steps.shell import ShellCommand

from buildbot.process.properties import WithProperties

f.addStep(ShellCommand(

command=["tar", "czf",

WithProperties("build-%s.tar.gz", "revision"),

"source"]))

If this BuildStep were used in a tree obtained from Subversion, it would create a tarball
with a name like ‘build-1234.tar.gz’.

The WithProperties function does printf-style string interpolation, using strings ob-
tained by calling build.getProperty(propname). Note that for every %s (or %d, etc), you
must have exactly one additional argument to indicate which build property you want to
insert.

You can also use python dictionary-style string interpolation by using the %(propname)s
syntax. In this form, the property name goes in the parentheses, and WithProperties takes
no additional arguments:

1 Build properties are serialized along with the build results, so they must be serializable. For this rea-
son, the value of any build property should be simple inert data: strings, numbers, lists, tuples, and
dictionaries. They should not contain class instances.

Chapter 6: Build Process 69

f.addStep(ShellCommand(

command=["tar", "czf",

WithProperties("build-%(revision)s.tar.gz"),

"source"]))

Don’t forget the extra “s” after the closing parenthesis! This is the cause of many
confusing errors.

The dictionary-style interpolation supports a number of more advanced syntaxes, too.

propname:-replacement

If propname exists, substitute its value; otherwise, substitute replacement.
replacement may be empty (%(propname:-)s)

propname:+replacement

If propname exists, substitute replacement; otherwise, substitute an empty
string.

Although these are similar to shell substitutions, no other substitutions are currently
supported, and replacement in the above cannot contain more substitutions.

Note: like python, you can either do positional-argument interpolation or keyword-
argument interpolation, not both. Thus you cannot use a string like WithProperties("foo-
%(revision)s-%s", "branch").

Common Build Properties

The following build properties are set when the build is started, and are available to all
steps.

branch

This comes from the build’s SourceStamp, and describes which branch is being
checked out. This will be None (which interpolates into WithProperties as
an empty string) if the build is on the default branch, which is generally the
trunk. Otherwise it will be a string like “branches/beta1.4”. The exact syntax
depends upon the VC system being used.

revision

This also comes from the SourceStamp, and is the revision of the source code
tree that was requested from the VC system. When a build is requested of a
specific revision (as is generally the case when the build is triggered by Changes),
this will contain the revision specification. This is always a string, although
the syntax depends upon the VC system in use: for SVN it is an integer, for
Mercurial and Monotone it is a short string, for Darcs it is a rather large string,
etc.

If the “force build” button was pressed, the revision will be None, which means
to use the most recent revision available. This is a “trunk build”. This will be
interpolated as an empty string.

got_revision

This is set when a Source step checks out the source tree, and provides the revi-
sion that was actually obtained from the VC system. In general this should be

Chapter 6: Build Process 70

the same as revision, except for trunk builds, where got_revision indicates
what revision was current when the checkout was performed. This can be used
to rebuild the same source code later.

Note that for some VC systems (Darcs in particular), the revision is a large
string containing newlines, and is not suitable for interpolation into a filename.

buildername

This is a string that indicates which Builder the build was a part of. The
combination of buildername and buildnumber uniquely identify a build.

buildnumber

Each build gets a number, scoped to the Builder (so the first build performed
on any given Builder will have a build number of 0). This integer property
contains the build’s number.

slavename

This is a string which identifies which buildslave the build is running on.

scheduler

If the build was started from a scheduler, then this property will contain the
name of that scheduler.

6.1.3 Source Checkout

The first step of any build is typically to acquire the source code from which the build will
be performed. There are several classes to handle this, one for each of the different source
control system that Buildbot knows about. For a description of how Buildbot treats source
control in general, see Section 3.1 [Version Control Systems], page 17.

All source checkout steps accept some common parameters to control how they get the
sources and where they should be placed. The remaining per-VC-system parameters are
mostly to specify where exactly the sources are coming from.

mode

a string describing the kind of VC operation that is desired. Defaults to update.

update specifies that the CVS checkout/update should be performed di-
rectly into the workdir. Each build is performed in the same direc-
tory, allowing for incremental builds. This minimizes disk space,
bandwidth, and CPU time. However, it may encounter problems
if the build process does not handle dependencies properly (some-
times you must do a “clean build” to make sure everything gets
compiled), or if source files are deleted but generated files can in-
fluence test behavior (e.g. python’s .pyc files), or when source direc-
tories are deleted but generated files prevent CVS from removing
them. Builds ought to be correct regardless of whether they are
done “from scratch” or incrementally, but it is useful to test both
kinds: this mode exercises the incremental-build style.

copy specifies that the CVS workspace should be maintained in a sep-
arate directory (called the ’copydir’), using checkout or update as
necessary. For each build, a new workdir is created with a copy of

Chapter 6: Build Process 71

the source tree (rm -rf workdir; cp -r copydir workdir). This dou-
bles the disk space required, but keeps the bandwidth low (update
instead of a full checkout). A full ’clean’ build is performed each
time. This avoids any generated-file build problems, but is still oc-
casionally vulnerable to CVS problems such as a repository being
manually rearranged, causing CVS errors on update which are not
an issue with a full checkout.

clobber specifes that the working directory should be deleted each time, ne-
cessitating a full checkout for each build. This insures a clean build
off a complete checkout, avoiding any of the problems described
above. This mode exercises the “from-scratch” build style.

export this is like clobber, except that the ’cvs export’ command is used
to create the working directory. This command removes all CVS
metadata files (the CVS/ directories) from the tree, which is some-
times useful for creating source tarballs (to avoid including the
metadata in the tar file).

workdir like all Steps, this indicates the directory where the build will take place. Source
Steps are special in that they perform some operations outside of the workdir
(like creating the workdir itself).

alwaysUseLatest

if True, bypass the usual “update to the last Change” behavior, and always
update to the latest changes instead.

retry If set, this specifies a tuple of (delay, repeats) which means that when a
full VC checkout fails, it should be retried up to repeats times, waiting delay

seconds between attempts. If you don’t provide this, it defaults to None, which
means VC operations should not be retried. This is provided to make life easier
for buildslaves which are stuck behind poor network connections.

My habit as a developer is to do a cvs update and make each morning. Problems can
occur, either because of bad code being checked in, or by incomplete dependencies causing
a partial rebuild to fail where a complete from-scratch build might succeed. A quick Builder
which emulates this incremental-build behavior would use the mode=’update’ setting.

On the other hand, other kinds of dependency problems can cause a clean build to fail
where a partial build might succeed. This frequently results from a link step that depends
upon an object file that was removed from a later version of the tree: in the partial tree,
the object file is still around (even though the Makefiles no longer know how to create it).

“official” builds (traceable builds performed from a known set of source revisions) are
always done as clean builds, to make sure it is not influenced by any uncontrolled factors
(like leftover files from a previous build). A “full” Builder which behaves this way would
want to use the mode=’clobber’ setting.

Each VC system has a corresponding source checkout class: their arguments are de-
scribed on the following pages.

Chapter 6: Build Process 72

6.1.3.1 CVS

The CVS build step performs a CVS (http://www.nongnu.org/cvs/) checkout or update.
It takes the following arguments:

cvsroot (required): specify the CVSROOT value, which points to a CVS
repository, probably on a remote machine. For example, the cvsroot
value you would use to get a copy of the Buildbot source code is
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/buildbot

cvsmodule

(required): specify the cvs module, which is generally a subdirectory of the
CVSROOT. The cvsmodule for the Buildbot source code is buildbot.

branch a string which will be used in a -r argument. This is most useful for specifying
a branch to work on. Defaults to HEAD.

global_options

a list of flags to be put before the verb in the CVS command.

checkoutDelay

if set, the number of seconds to put between the timestamp of the last known
Change and the value used for the -D option. Defaults to half of the parent
Build’s treeStableTimer.

6.1.3.2 SVN

The SVN build step performs a Subversion (http://subversion.tigris.org) checkout or
update. There are two basic ways of setting up the checkout step, depending upon whether
you are using multiple branches or not.

If all of your builds use the same branch, then you should create the SVN step with the
svnurl argument:

svnurl (required): this specifies the URL argument that will be given to the
svn checkout command. It dictates both where the repository is
located and which sub-tree should be extracted. In this respect, it
is like a combination of the CVS cvsroot and cvsmodule arguments.
For example, if you are using a remote Subversion repository which is
accessible through HTTP at a URL of http://svn.example.com/repos,
and you wanted to check out the trunk/calc sub-tree, you would use
svnurl="http://svn.example.com/repos/trunk/calc" as an argument to
your SVN step.

If, on the other hand, you are building from multiple branches, then you should create
the SVN step with the baseURL and defaultBranch arguments instead:

baseURL (required): this specifies the base repository URL, to which a branch name will
be appended. It should probably end in a slash.

defaultBranch

(optional): this specifies the name of the branch to use when a Build does not
provide one of its own. This will be appended to baseURL to create the string
that will be passed to the svn checkout command.

Chapter 6: Build Process 73

username (optional): if specified, this will be passed to the svn binary with a --username

option.

password (optional): if specified, this will be passed to the svn binary with a --password

option. The password itself will be suitably obfuscated in the logs.

extra_args

(optional): if specified, an array of strings that will be passed as extra arguments
to the svn binary.

keep_on_purge

(optional): specific files or directories to keep between purges, like some build
outputs that can be reused between builds.

ignore_ignores

(optional): when purging changes, don’t use rules defined in svn:ignore proper-
ties and global-ignores in subversion/config.

always_purge

(optional): if set to True, always purge local changes after each build. This is
everything that would appear in a svn status.

depth (optional): Specify depth argument to achieve sparse checkout. Only available
if slave has Subversion 1.5 or higher.

If set to "empty" updates will not pull in any files or subdirectories not already
present. If set to "files", updates will pull in any files not already present, but
not directories. If set to "immediates", updates willl pull in any files or sub-
directories not already present, the new subdirectories will have depth: empty.
If set to "infinity", updates will pull in any files or subdirectories not already
present; the new subdirectories will have depth-infinity. Infinity is equivalent
to SVN default update behavior, without specifying any depth argument.

If you are using branches, you must also make sure your ChangeSource will report the
correct branch names.

branch example

Let’s suppose that the “MyProject” repository uses branches for the trunk, for various
users’ individual development efforts, and for several new features that will require some
amount of work (involving multiple developers) before they are ready to merge onto the
trunk. Such a repository might be organized as follows:

svn://svn.example.org/MyProject/trunk

svn://svn.example.org/MyProject/branches/User1/foo

svn://svn.example.org/MyProject/branches/User1/bar

svn://svn.example.org/MyProject/branches/User2/baz

svn://svn.example.org/MyProject/features/newthing

svn://svn.example.org/MyProject/features/otherthing

Further assume that we want the Buildbot to run tests against the trunk and against
all the feature branches (i.e., do a checkout/compile/build of branch X when a file has been
changed on branch X, when X is in the set [trunk, features/newthing, features/otherthing]).
We do not want the Buildbot to automatically build any of the user branches, but it should

Chapter 6: Build Process 74

be willing to build a user branch when explicitly requested (most likely by the user who
owns that branch).

There are three things that need to be set up to accomodate this system. The first
is a ChangeSource that is capable of identifying the branch which owns any given
file. This depends upon a user-supplied function, in an external program that runs
in the SVN commit hook and connects to the buildmaster’s PBChangeSource over a
TCP connection. (you can use the “buildbot sendchange” utility for this purpose,
but you will still need an external program to decide what value should be passed
to the --branch= argument). For example, a change to a file with the SVN url of
“svn://svn.example.org/MyProject/features/newthing/src/foo.c” should be broken down
into a Change instance with branch=’features/newthing’ and file=’src/foo.c’.

The second piece is an AnyBranchScheduler which will pay attention to the desired
branches. It will not pay attention to the user branches, so it will not automatically start
builds in response to changes there. The AnyBranchScheduler class requires you to explicitly
list all the branches you want it to use, but it would not be difficult to write a subclass which
used branch.startswith(’features/’ to remove the need for this explicit list. Or, if you
want to build user branches too, you can use AnyBranchScheduler with branches=None to
indicate that you want it to pay attention to all branches.

The third piece is an SVN checkout step that is configured to handle the branches cor-
rectly, with a baseURL value that matches the way the ChangeSource splits each file’s URL
into base, branch, and file.

from buildbot.changes.pb import PBChangeSource

from buildbot.scheduler import AnyBranchScheduler

from buildbot.process import source, factory

from buildbot.steps import source, shell

c[’change_source’] = PBChangeSource()

s1 = AnyBranchScheduler(’main’,

[’trunk’, ’features/newthing’, ’features/otherthing’],

10*60, [’test-i386’, ’test-ppc’])

c[’schedulers’] = [s1]

f = factory.BuildFactory()

f.addStep(source.SVN(mode=’update’,

baseURL=’svn://svn.example.org/MyProject/’,

defaultBranch=’trunk’))

f.addStep(shell.Compile(command="make all"))

f.addStep(shell.Test(command="make test"))

c[’builders’] = [

{’name’:’test-i386’, ’slavename’:’bot-i386’, ’builddir’:’test-i386’,

’factory’:f },

{’name’:’test-ppc’, ’slavename’:’bot-ppc’, ’builddir’:’test-ppc’,

’factory’:f },

]

Chapter 6: Build Process 75

In this example, when a change arrives with a branch attribute of “trunk”, the result-
ing build will have an SVN step that concatenates “svn://svn.example.org/MyProject/”
(the baseURL) with “trunk” (the branch name) to get the correct svn command. If
the “newthing” branch has a change to “src/foo.c”, then the SVN step will concatenate
“svn://svn.example.org/MyProject/” with “features/newthing” to get the svnurl for check-
out.

6.1.3.3 Darcs

The Darcs build step performs a Darcs (http://darcs.net/) checkout or update.

Like See Section 6.1.3.2 [SVN], page 72, this step can either be configured to always
check out a specific tree, or set up to pull from a particular branch that gets specified
separately for each build. Also like SVN, the repository URL given to Darcs is created by
concatenating a baseURL with the branch name, and if no particular branch is requested, it
uses a defaultBranch. The only difference in usage is that each potential Darcs repository
URL must point to a fully-fledged repository, whereas SVN URLs usually point to sub-trees
of the main Subversion repository. In other words, doing an SVN checkout of baseURL is
legal, but silly, since you’d probably wind up with a copy of every single branch in the
whole repository. Doing a Darcs checkout of baseURL is just plain wrong, since the parent
directory of a collection of Darcs repositories is not itself a valid repository.

The Darcs step takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Darcs source
repository is available.

baseURL (required unless repourl is provided): the base repository URL, to which a
branch name will be appended. It should probably end in a slash.

defaultBranch

(allowed if and only if baseURL is provided): this specifies the name of the
branch to use when a Build does not provide one of its own. This will be
appended to baseURL to create the string that will be passed to the darcs get

command.

6.1.3.4 Mercurial

The Mercurial build step performs a Mercurial (http://selenic.com/mercurial) (aka
“hg”) checkout or update.

Branches are available in two modes: ”dirname” like See Section 6.1.3.3 [Darcs], page 75,
or ”inrepo”, which uses the repository internal branches. Make sure this setting matches
your changehook, if you have that installed.

The Mercurial step takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Mercurial source
repository is available.

baseURL (required unless repourl is provided): the base repository URL, to which a
branch name will be appended. It should probably end in a slash.

defaultBranch

(allowed if and only if baseURL is provided): this specifies the name of the
branch to use when a Build does not provide one of its own. This will be

Chapter 6: Build Process 76

appended to baseURL to create the string that will be passed to the hg clone

command.

branchType

either ’dirname’ (default) or ’inrepo’ depending on whether the branch name
should be appended to the baseURL or the branch is a mercurial named branch
and can be found within the repourl.

clobberOnBranchChange

boolean, defaults to True. If set and using inrepos branches, clobber the tree
at each branch change. Otherwise, just update to the branch.

6.1.3.5 Arch

The Arch build step performs an Arch (http://gnuarch.org/) checkout or update using
the tla client. It takes the following arguments:

url (required): this specifies the URL at which the Arch source archive is available.

version (required): this specifies which “development line” (like a branch) should be
used. This provides the default branch name, but individual builds may specify
a different one.

archive (optional): Each repository knows its own archive name. If this parameter
is provided, it must match the repository’s archive name. The parameter is
accepted for compatibility with the Bazaar step, below.

6.1.3.6 Bazaar

Bazaar is an alternate implementation of the Arch VC system, which uses a client named
baz. The checkout semantics are just different enough from tla that there is a separate
BuildStep for it.

It takes exactly the same arguments as Arch, except that the archive= parameter is
required. (baz does not emit the archive name when you do baz register-archive, so we
must provide it ourselves).

6.1.3.7 Bzr

bzr is a descendant of Arch/Baz, and is frequently referred to as simply “Bazaar”. The
repository-vs-workspace model is similar to Darcs, but it uses a strictly linear sequence of
revisions (one history per branch) like Arch. Branches are put in subdirectories. This makes
it look very much like Mercurial. It takes the following arguments:

repourl (required unless baseURL is provided): the URL at which the Bzr source repos-
itory is available.

baseURL (required unless repourl is provided): the base repository URL, to which a
branch name will be appended. It should probably end in a slash.

defaultBranch

(allowed if and only if baseURL is provided): this specifies the name of the
branch to use when a Build does not provide one of its own. This will be ap-
pended to baseURL to create the string that will be passed to the bzr checkout

command.

Chapter 6: Build Process 77

forceSharedRepo

(boolean, optional, defaults to False): If set to True, the working directory will
be made into a bzr shared repository if it is not already. Shared repository
greatly reduces the amount of history data that needs to be downloaded if not
using update/copy mode, or if using update/copy mode with multiple branches.

6.1.3.8 P4

The P4 build step creates a Perforce (http://www.perforce.com/) client specification and
performs an update.

p4base A view into the Perforce depot without branch name or trailing "...". Typically
"//depot/proj/".

defaultBranch

A branch name to append on build requests if none is specified. Typically
"trunk".

p4port (optional): the host:port string describing how to get to the P4 Depot (reposi-
tory), used as the -p argument for all p4 commands.

p4user (optional): the Perforce user, used as the -u argument to all p4 commands.

p4passwd (optional): the Perforce password, used as the -p argument to all p4 commands.

p4extra_views

(optional): a list of (depotpath, clientpath) tuples containing extra views to be
mapped into the client specification. Both will have "/..." appended automat-
ically. The client name and source directory will be prepended to the client
path.

p4client (optional): The name of the client to use. In mode=’copy’ and mode=’update’,
it’s particularly important that a unique name is used for each checkout di-
rectory to avoid incorrect synchronization. For this reason, Python percent
substitution will be performed on this value to replace %(slave)s with the
slave name and %(builder)s with the builder name. The default is "build-
bot %(slave)s %(build)s".

6.1.3.9 Git

The Git build step clones or updates a Git (http://git.or.cz/) repository and checks
out the specified branch or revision. Note that the buildbot supports Git version 1.2.0 and
later: earlier versions (such as the one shipped in Ubuntu ’Dapper’) do not support the git
init command that the buildbot uses.

The Git step takes the following arguments:

repourl (required): the URL of the upstream Git repository.

branch (optional): this specifies the name of the branch to use when a Build does not
provide one of its own. If this this parameter is not specified, and the Build
does not provide a branch, the “master” branch will be used.

ignore_ignores

(optional): when purging changes, don’t use .gitignore and .git/info/exclude.

Chapter 6: Build Process 78

6.1.3.10 Monotone

The Monotone build step performs a Monotone (http://code.monotone.ca/monotone)
(aka “mtn”) checkout or update.

It takes the following arguments:

repourl The server address and port (addr:port) or URI where the Monotone source
repositry is available. This is a required argument.

branch The default branch that will be used when a Build does not provide one of its
own. This is a required argument.

6.1.4 ShellCommand

This is a useful base class for just about everything you might want to do during a build
(except for the initial source checkout). It runs a single command in a child shell on the
buildslave. All stdout/stderr is recorded into a LogFile. The step finishes with a status of
FAILURE if the command’s exit code is non-zero, otherwise it has a status of SUCCESS.

The preferred way to specify the command is with a list of argv strings, since this allows
for spaces in filenames and avoids doing any fragile shell-escaping. You can also specify the
command with a single string, in which case the string is given to ’/bin/sh -c COMMAND’
for parsing.

On Windows, commands are run via cmd.exe /c which works well. However, if you’re
running a batch file, the error level does not get propagated correctly unless you add ’call’
before your batch file’s name: cmd=[’call’, ’myfile.bat’, ...].

ShellCommand arguments:

command a list of strings (preferred) or single string (discouraged) which specifies the
command to be run. A list of strings is preferred because it can be used directly
as an argv array. Using a single string (with embedded spaces) requires the
buildslave to pass the string to /bin/sh for interpretation, which raises all sorts
of difficult questions about how to escape or interpret shell metacharacters.

workdir All ShellCommands are run by default in the “workdir”, which defaults to
the “‘build’” subdirectory of the slave builder’s base directory. The abso-
lute path of the workdir will thus be the slave’s basedir (set as an option to
buildbot create-slave, see Section 2.5 [Creating a buildslave], page 10) plus
the builder’s basedir (set in the builder’s c[’builddir’] key in master.cfg)
plus the workdir itself (a class-level attribute of the BuildFactory, defaults to
“‘build’”).

For example:

f.addStep(ShellCommand(command=["make", "test"],

workdir="build/tests"))

env a dictionary of environment strings which will be added to the child command’s
environment. For example, to run tests with a different i18n language setting,
you might use

f.addStep(ShellCommand(command=["make", "test"],

env={’LANG’: ’fr_FR’}))

Chapter 6: Build Process 79

These variable settings will override any existing ones in the buildslave’s
environment or the environment specified in the Builder. The exception
is PYTHONPATH, which is merged with (actually prepended to) any
existing $PYTHONPATH setting. The value is treated as a list of
directories to prepend, and a single string is treated like a one-item
list. For example, to prepend both ‘/usr/local/lib/python2.3’ and
‘/home/buildbot/lib/python’ to any existing $PYTHONPATH setting, you
would do something like the following:

f.addStep(ShellCommand(

command=["make", "test"],

env={’PYTHONPATH’: ["/usr/local/lib/python2.3",

"/home/buildbot/lib/python"] }))

want_stdout

if False, stdout from the child process is discarded rather than being sent to the
buildmaster for inclusion in the step’s LogFile.

want_stderr

like want_stdout but for stderr. Note that commands run through a PTY do
not have separate stdout/stderr streams: both are merged into stdout.

usePTY Should this command be run in a pty? The default is to observe the con-
figuration of the client (see Section 2.5.1 [Buildslave Options], page 12), but
specifying True or False here will override the default.

The advantage of using a PTY is that “grandchild” processes are more likely to
be cleaned up if the build is interrupted or times out (since it enables the use of a
“process group” in which all child processes will be placed). The disadvantages:
some forms of Unix have problems with PTYs, some of your unit tests may
behave differently when run under a PTY (generally those which check to see
if they are being run interactively), and PTYs will merge the stdout and stderr
streams into a single output stream (which means the red-vs-black coloring in
the logfiles will be lost).

logfiles Sometimes commands will log interesting data to a local file, rather than emit-
ting everything to stdout or stderr. For example, Twisted’s “trial” command
(which runs unit tests) only presents summary information to stdout, and puts
the rest into a file named ‘_trial_temp/test.log’. It is often useful to watch
these files as the command runs, rather than using /bin/cat to dump their
contents afterwards.

The logfiles= argument allows you to collect data from these secondary log-
files in near-real-time, as the step is running. It accepts a dictionary which
maps from a local Log name (which is how the log data is presented in the
build results) to either a remote filename (interpreted relative to the build’s
working directory), or a dictionary of options. Each named file will be polled
on a regular basis (every couple of seconds) as the build runs, and any new text
will be sent over to the buildmaster.

If you provide a dictionary of options instead of a string, you must specify
the filename key. You can optionally provide a follow key which is a boolean

Chapter 6: Build Process 80

controlling whether a logfile is followed or concatenated in its entirety. Following
is appropriate for logfiles to which the build step will append, where the pre-
existing contents are not interesting. The default value for follow is False,
which gives the same behavior as just providing a string filename.

f.addStep(ShellCommand(

command=["make", "test"],

logfiles={"triallog": "_trial_temp/test.log"}))

f.addStep(ShellCommand(

command=["make", "test"],

logfiles={"triallog": {"filename": "_trial_temp/test.log",

"follow": True,}}))

lazylogfiles

If set to True, logfiles will be tracked lazily, meaning that they will only be
added when and if something is written to them. This can be used to suppress
the display of empty or missing log files. The default is False.

timeout if the command fails to produce any output for this many seconds, it is assumed
to be locked up and will be killed.

maxTime if the command takes longer than this many seconds, it will be killed.

description

This will be used to describe the command (on the Waterfall display) while
the command is still running. It should be a single imperfect-tense verb, like
“compiling” or “testing”. The preferred form is a list of short strings, which
allows the HTML Waterfall display to create narrower columns by emitting a

 tag between each word. You may also provide a single string.

descriptionDone

This will be used to describe the command once it has finished. A simple noun
like “compile” or “tests” should be used. Like description, this may either
be a list of short strings or a single string.

If neither description nor descriptionDone are set, the actual command
arguments will be used to construct the description. This may be a bit too
wide to fit comfortably on the Waterfall display.

f.addStep(ShellCommand(command=["make", "test"],

description=["testing"],

descriptionDone=["tests"]))

logEnviron

If this option is true (the default), then the step’s logfile will describe the
environment variables on the slave. In situations where the environment is not
relevant and is long, it may be easier to set logEnviron=False.

6.1.5 Simple ShellCommand Subclasses

Several subclasses of ShellCommand are provided as starting points for common build steps.
These are all very simple: they just override a few parameters so you don’t have to specify
them yourself, making the master.cfg file less verbose.

Chapter 6: Build Process 81

6.1.5.1 Configure

This is intended to handle the ./configure step from autoconf-style projects, or the
perl Makefile.PL step from perl MakeMaker.pm-style modules. The default command
is ./configure but you can change this by providing a command= parameter.

6.1.5.2 Compile

This is meant to handle compiling or building a project written in C. The default command is
make all. When the compile is finished, the log file is scanned for GCC warning messages,
a summary log is created with any problems that were seen, and the step is marked as
WARNINGS if any were discovered. The number of warnings is stored in a Build Property
named “warnings-count”, which is accumulated over all Compile steps (so if two warnings
are found in one step, and three are found in another step, the overall build will have a
“warnings-count” property of 5.

The default regular expression used to detect a warning is ’.*warning[:].*’ ,
which is fairly liberal and may cause false-positives. To use a different regexp, provide a
warningPattern= argument, or use a subclass which sets the warningPattern attribute:

f.addStep(Compile(command=["make", "test"],

warningPattern="^Warning: "))

The warningPattern= can also be a pre-compiled python regexp object: this makes it
possible to add flags like re.I (to use case-insensitive matching).

The suppressionFile= argument can be specified as the (relative) path of a file inside
the workdir defining warnings to be suppressed from the warning counting and log file.
The file will be uploaded to the master from the slave before compiling, and any warning
matched by a line in the suppression file will be ignored. This is useful to accept certain
warnings (eg. in some special module of the source tree or in cases where the compiler is
being particularly stupid), yet still be able to easily detect and fix the introduction of new
warnings.

The file must contain one line per pattern of warnings to ignore. Empty lines and lines
beginning with # are ignored. Other lines must consist of a regexp matching the file name,
followed by a colon (:), followed by a regexp matching the text of the warning. Optionally
this may be followed by another colon and a line number range. For example:

Sample warning suppression file

mi_packrec.c : .*result of 32-bit shift implicitly converted to 64 bits.* : 560-600

DictTabInfo.cpp : .*invalid access to non-static.*

kernel_types.h : .*only defines private constructors and has no friends.* : 51

If no line number range is specified, the pattern matches the whole file; if only one
number is given it matches only on that line.

The default warningPattern regexp only matches the warning text, so line numbers and
file names are ignored. To enable line number and file name matching, privide a different
regexp and provide a function (callable) as the argument of warningExtractor=. The
function is called with three arguments: the BuildStep object, the line in the log file with
the warning, and the SRE_Match object of the regexp search for warningPattern. It should
return a tuple (filename, linenumber, warning_test). For example:

Chapter 6: Build Process 82

f.addStep(Compile(command=["make"],

warningPattern="^(.*?):([0-9]+): [Ww]arning: (.*)$",

warningExtractor=Compile.warnExtractFromRegexpGroups,

suppressionFile="support-files/compiler_warnings.supp"))

(Compile.warnExtractFromRegexpGroups is a pre-defined function that returns the file-
name, linenumber, and text from groups (1,2,3) of the regexp match).

In projects with source files in multiple directories, it is possible to get full path names
for file names matched in the suppression file, as long as the build command outputs
the names of directories as they are entered into and left again. For this, specify reg-
exps for the arguments directoryEnterPattern= and directoryLeavePattern=. The
directoryEnterPattern= regexp should return the name of the directory entered into in
the first matched group. The defaults, which are suitable for GNU Make, are these:

directoryEnterPattern = "make.*: Entering directory [\"‘’](.*)[’‘\"]"

directoryLeavePattern = "make.*: Leaving directory"

(TODO: this step needs to be extended to look for GCC error messages as well, and
collect them into a separate logfile, along with the source code filenames involved).

6.1.5.3 Test

This is meant to handle unit tests. The default command is make test, and the
warnOnFailure flag is set.

6.1.5.4 TreeSize

This is a simple command that uses the ’du’ tool to measure the size of the code tree. It
puts the size (as a count of 1024-byte blocks, aka ’KiB’ or ’kibibytes’) on the step’s status
text, and sets a build property named ’tree-size-KiB’ with the same value.

6.1.5.5 PerlModuleTest

This is a simple command that knows how to run tests of perl modules. It parses the output
to determine the number of tests passed and failed and total number executed, saving the
results for later query.

6.1.6 Testing with mysql-test-run

The process.mtrlogobserver.MTR class is a subclass of Test (Section 6.1.5.3 [Test],
page 82). It is used to run test suites using the mysql-test-run program, as used in MySQL,
Drizzle, MariaDB, and MySQL storage engine plugins.

The shell command to run the test suite is specified in the same way as for the Test
class. The MTR class will parse the output of running the test suite, and use the count of
tests executed so far to provide more accurate completion time estimates. Any test failures
that occur during the test are summarized on the Waterfall Display.

Server error logs are added as additional log files, useful to debug test failures.

Optionally, data about the test run and any test failures can be inserted into a data-
base for further analysis and report generation. To use this facility, create an instance
of twisted.enterprise.adbapi.ConnectionPool with connections to the database. The
necessary tables can be created automatically by setting autoCreateTables to True, or
manually using the SQL found in the ‘mtrlogobserver.py’ source file.

Chapter 6: Build Process 83

One problem with specifying a database is that each reload of the configuration will get
a new instance of ConnectionPool (even if the connection parameters are the same). To
avoid that Buildbot thinks the builder configuration has changed because of this, use the
process.mtrlogobserver.EqConnectionPool subclass of ConnectionPool, which imple-
ments an equiality operation that avoids this problem.

Example use:

from buildbot.process.mtrlogobserver import MTR, EqConnectionPool

myPool = EqConnectionPool("MySQLdb", "host", "buildbot", "password", "db")

myFactory.addStep(MTR(workdir="mysql-test", dbpool=myPool,

command=["perl", "mysql-test-run.pl", "--force"]))

MTR arguments:

textLimit

Maximum number of test failures to show on the waterfall page (to not flood
the page in case of a large number of test failures. Defaults to 5.

testNameLimit

Maximum length of test names to show unabbreviated in the waterfall page, to
avoid excessive column width. Defaults to 16.

parallel Value of --parallel option used for mysql-test-run.pl (number of processes
used to run the test suite in parallel). Defaults to 4. This is used to determine
the number of server error log files to download from the slave. Specifying a too
high value does not hurt (as nonexisting error logs will be ignored), however
if using --parallel value greater than the default it needs to be specified, or
some server error logs will be missing.

dbpool An instance of twisted.enterprise.adbapi.ConnectionPool, or None. Defaults to
None. If specified, results are inserted into the database using the Connection-
Pool.

autoCreateTables

Boolean, defaults to False. If True (and dbpool is specified), the necessary
database tables will be created automatically if they do not exist already. Al-
ternatively, the tables can be created manually from the SQL statements found
in the mtrlogobserver.py source file.

test_type

Short string that will be inserted into the database in the row for the test run.
Defaults to the empty string, but can be specified to identify different types of
test runs.

test_info

Descriptive string that will be inserted into the database in the row for the
test run. Defaults to the empty string, but can be specified as a user-readable
description of this particular test run.

mtr_subdir

The subdirectory in which to look for server error log files. Defaults to “mysql-
test”, which is usually correct. WithProperties is supported.

Chapter 6: Build Process 84

6.1.6.1 SetProperty

This buildstep is similar to ShellCommand, except that it captures the output of the com-
mand into a property. It is usually used like this:

f.addStep(SetProperty(command="uname -a", property="uname"))

This runs uname -a and captures its stdout, stripped of leading and trailing whitespace,
in the property "uname". To avoid stripping, add strip=False. The property argument
can be specified as a WithProperties object.

The more advanced usage allows you to specify a function to extract properties from the
command output. Here you can use regular expressions, string interpolation, or whatever
you would like. The function is called with three arguments: the exit status of the command,
its standard output as a string, and its standard error as a string. It should return a
dictionary containing all new properties.

def glob2list(rc, stdout, stderr):

jpgs = [l.strip() for l in stdout.split(’\n’)]

return { ’jpgs’ : jpgs }

f.addStep(SetProperty(command="ls -1 *.jpg", extract_fn=glob2list))

Note that any ordering relationship of the contents of stdout and stderr is lost. For
example, given

f.addStep(SetProperty(

command="echo output1; echo error >&2; echo output2",

extract_fn=my_extract))

Then my_extract will see stdout="output1\noutput2\n" and stderr="error\n".

6.1.6.2 SubunitShellCommand

This buildstep is similar to ShellCommand, except that it runs the log content through a
subunit filter to extract test and failure counts.

f.addStep(SubunitShellCommand(command="make test"))

This runs make test and filters it through subunit. The ’tests’ and ’test failed’ progress
metrics will now accumulate test data from the test run.

6.1.7 Python BuildSteps

Here are some BuildSteps that are specifcally useful for projects implemented in Python.

6.1.7.1 BuildEPYDoc

epydoc (http://epydoc.sourceforge.net/) is a tool for generating API documentation
for Python modules from their docstrings. It reads all the .py files from your source tree,
processes the docstrings therein, and creates a large tree of .html files (or a single .pdf file).

The buildbot.steps.python.BuildEPYDoc step will run epydoc to produce this API
documentation, and will count the errors and warnings from its output.

You must supply the command line to be used. The default is make epydocs, which
assumes that your project has a Makefile with an “epydocs” target. You might wish to use
something like epydoc -o apiref source/PKGNAME instead. You might also want to add
--pdf to generate a PDF file instead of a large tree of HTML files.

Chapter 6: Build Process 85

The API docs are generated in-place in the build tree (under the workdir, in the sub-
directory controlled by the “-o” argument). To make them useful, you will probably
have to copy them to somewhere they can be read. A command like rsync -ad apiref/

dev.example.com:~public_html/current-apiref/ might be useful. You might instead
want to bundle them into a tarball and publish it in the same place where the generated
install tarball is placed.

from buildbot.steps.python import BuildEPYDoc

...

f.addStep(BuildEPYDoc(command=["epydoc", "-o", "apiref", "source/mypkg"]))

6.1.7.2 PyFlakes

PyFlakes (http://divmod.org/trac/wiki/DivmodPyflakes) is a tool to perform basic
static analysis of Python code to look for simple errors, like missing imports and references
of undefined names. It is like a fast and simple form of the C “lint” program. Other tools
(like pychecker) provide more detailed results but take longer to run.

The buildbot.steps.python.PyFlakes step will run pyflakes and count the various
kinds of errors and warnings it detects.

You must supply the command line to be used. The default is make pyflakes, which
assumes you have a top-level Makefile with a “pyflakes” target. You might want to use
something like pyflakes . or pyflakes src.

from buildbot.steps.python import PyFlakes

...

f.addStep(PyFlakes(command=["pyflakes", "src"]))

6.1.7.3 PyLint

Similarly, the buildbot.steps.python.PyLint step will run pylint and analyze the results.

You must supply the command line to be used. There is no default.

from buildbot.steps.python import PyLint

...

f.addStep(PyLint(command=["pylint", "src"]))

6.1.8 Transferring Files

Most of the work involved in a build will take place on the buildslave. But occasionally
it is useful to do some work on the buildmaster side. The most basic way to involve the
buildmaster is simply to move a file from the slave to the master, or vice versa. There are
a pair of BuildSteps named FileUpload and FileDownload to provide this functionality.
FileUpload moves a file up to the master, while FileDownload moves a file down from the
master.

As an example, let’s assume that there is a step which produces an HTML file
within the source tree that contains some sort of generated project documentation.
We want to move this file to the buildmaster, into a ‘~/public_html’ directory, so it
can be visible to developers. This file will wind up in the slave-side working directory

Chapter 6: Build Process 86

under the name ‘docs/reference.html’. We want to put it into the master-side
‘~/public_html/ref.html’.

from buildbot.steps.shell import ShellCommand

from buildbot.steps.transfer import FileUpload

f.addStep(ShellCommand(command=["make", "docs"]))

f.addStep(FileUpload(slavesrc="docs/reference.html",

masterdest="~/public_html/ref.html"))

The masterdest= argument will be passed to os.path.expanduser, so things like “~” will
be expanded properly. Non-absolute paths will be interpreted relative to the buildmaster’s
base directory. Likewise, the slavesrc= argument will be expanded and interpreted relative
to the builder’s working directory.

To move a file from the master to the slave, use the FileDownload command. For
example, let’s assume that some step requires a configuration file that, for whatever reason,
could not be recorded in the source code repository or generated on the buildslave side:

from buildbot.steps.shell import ShellCommand

from buildbot.steps.transfer import FileDownload

f.addStep(FileDownload(mastersrc="~/todays_build_config.txt",

slavedest="build_config.txt"))

f.addStep(ShellCommand(command=["make", "config"]))

Like FileUpload, the mastersrc= argument is interpreted relative to the
buildmaster’s base directory, and the slavedest= argument is relative to the
builder’s working directory. If the buildslave is running in ‘~buildslave’, and the
builder’s “builddir” is something like ‘tests-i386’, then the workdir is going to be
‘~buildslave/tests-i386/build’, and a slavedest= of ‘foo/bar.html’ will get put in
‘~buildslave/tests-i386/build/foo/bar.html’. Both of these commands will create
any missing intervening directories.

Other Parameters

The maxsize= argument lets you set a maximum size for the file to be transferred. This may
help to avoid surprises: transferring a 100MB coredump when you were expecting to move
a 10kB status file might take an awfully long time. The blocksize= argument controls
how the file is sent over the network: larger blocksizes are slightly more efficient but also
consume more memory on each end, and there is a hard-coded limit of about 640kB.

The mode= argument allows you to control the access permissions of the target file,
traditionally expressed as an octal integer. The most common value is probably 0755,
which sets the “x” executable bit on the file (useful for shell scripts and the like). The
default value for mode= is None, which means the permission bits will default to whatever
the umask of the writing process is. The default umask tends to be fairly restrictive, but at
least on the buildslave you can make it less restrictive with a –umask command-line option
at creation time (see Section 2.5.1 [Buildslave Options], page 12).

Transfering Directories

To transfer complete directories from the buildslave to the master, there is a BuildStep
named DirectoryUpload. It works like FileUpload, just for directories. However it does

Chapter 6: Build Process 87

not support the maxsize, blocksize and mode arguments. As an example, let’s assume an
generated project documentation, which consists of many files (like the output of doxygen or
epydoc). We want to move the entire documentation to the buildmaster, into a ~/public_

html/docs directory. On the slave-side the directory can be found under docs:

from buildbot.steps.shell import ShellCommand

from buildbot.steps.transfer import DirectoryUpload

f.addStep(ShellCommand(command=["make", "docs"]))

f.addStep(DirectoryUpload(slavesrc="docs",

masterdest="~/public_html/docs"))

The DirectoryUpload step will create all necessary directories and transfers empty di-
rectories, too.

6.1.9 Steps That Run on the Master

Occasionally, it is useful to execute some task on the master, for example to create a
directory, deploy a build result, or trigger some other centralized processing. This is possible,
in a limited fashion, with the MasterShellCommand step.

This step operates similarly to a regular ShellCommand, but executes on the master,
instead of the slave. To be clear, the enclosing Build object must still have a slave object,
just as for any other step – only, in this step, the slave does not do anything.

In this example, the step renames a tarball based on the day of the week.

from buildbot.steps.transfer import FileUpload

from buildbot.steps.master import MasterShellCommand

f.addStep(FileUpload(slavesrc="widgetsoft.tar.gz",

masterdest="/var/buildoutputs/widgetsoft-new.tar.gz"))

f.addStep(MasterShellCommand(command="""

cd /var/buildoutputs;

mv widgetsoft-new.tar.gz widgetsoft-‘date +%a‘.tar.gz"""))

6.1.10 Triggering Schedulers

The counterpart to the Triggerable described in section see Section 4.5.7 [Triggerable Sched-
uler], page 37 is the Trigger BuildStep.

from buildbot.steps.trigger import Trigger

f.addStep(Trigger(schedulerNames=[’build-prep’],

waitForFinish=True,

updateSourceStamp=True,

set_properties={ ’quick’ : False },

copy_properties=[’release_code_name’]))

The schedulerNames= argument lists the Triggerables that should be triggered when
this step is executed. Note that it is possible, but not advisable, to create a cycle where a
build continually triggers itself, because the schedulers are specified by name.

If waitForFinish is True, then the step will not finish until all of the builds from the
triggered schedulers have finished. If this argument is False (the default) or not given, then
the buildstep succeeds immediately after triggering the schedulers.

Chapter 6: Build Process 88

If updateSourceStamp is True (the default), then step updates the SourceStamp given
to the Triggerables to include got_revision (the revision actually used in this build) as
revision (the revision to use in the triggered builds). This is useful to ensure that all of
the builds use exactly the same SourceStamp, even if other Changes have occurred while
the build was running.

Two parameters allow control of the properties that are passed to the triggered scheduler.
To simply copy properties verbatim, list them in the copy_properties parameter. To set
properties explicitly, use the more sophisticated set_properties, which takes a dictionary
mapping property names to values. You may use WithProperties here to dynamically
construct new property values.

6.1.11 Writing New BuildSteps

While it is a good idea to keep your build process self-contained in the source code tree,
sometimes it is convenient to put more intelligence into your Buildbot configuration. One
way to do this is to write a custom BuildStep. Once written, this Step can be used in the
‘master.cfg’ file.

The best reason for writing a custom BuildStep is to better parse the results of the
command being run. For example, a BuildStep that knows about JUnit could look at the
logfiles to determine which tests had been run, how many passed and how many failed, and
then report more detailed information than a simple rc==0 -based “good/bad” decision.

6.1.11.1 Writing BuildStep Constructors

BuildStep classes have some extra equipment, because they are their own factories. Consider
the use of a BuildStep in ‘master.cfg’:

f.addStep(MyStep(someopt="stuff", anotheropt=1))

This creates a single instance of class MyStep. However, Buildbot needs a new object
each time the step is executed. this is accomplished by storing the information required to
instantiate a new object in the factory attribute. When the time comes to construct a
new Build, BuildFactory consults this attribute (via getStepFactory) and instantiates a
new step object.

When writing a new step class, then, keep in mind are that you cannot do anything "in-
teresting" in the constructor – limit yourself to checking and storing arguments. To ensure
that these arguments are provided to any new objects, call self.addFactoryArguments
with any keyword arguments your constructor needs.

Keep a **kwargs argument on the end of your options, and pass that up to the parent
class’s constructor.

The whole thing looks like this:

class Frobinfy(LoggingBuildStep):

def __init__(self,

frob_what="frobee",

frob_how_many=None,

frob_how=None,

**kwargs)

check

Chapter 6: Build Process 89

if frob_how_many is None:

raise TypeError("Frobinfy argument how_many is required")

call parent

LoggingBuildStep.__init__(self, **kwargs)

and record arguments for later

self.addFactoryArguments(

frob_what=frob_what,

frob_how_many=frob_how_many,

frob_how=frob_how)

class FastFrobnify(Frobnify):

def __init__(self,

speed=5,

**kwargs)

Frobnify.__init__(self, **kwargs)

self.addFactoryArguments(

speed=speed)

6.1.11.2 BuildStep LogFiles

Each BuildStep has a collection of “logfiles”. Each one has a short name, like “stdio” or
“warnings”. Each LogFile contains an arbitrary amount of text, usually the contents of
some output file generated during a build or test step, or a record of everything that was
printed to stdout/stderr during the execution of some command.

These LogFiles are stored to disk, so they can be retrieved later.

Each can contain multiple “channels”, generally limited to three basic ones: stdout,
stderr, and “headers”. For example, when a ShellCommand runs, it writes a few lines
to the “headers” channel to indicate the exact argv strings being run, which directory the
command is being executed in, and the contents of the current environment variables. Then,
as the command runs, it adds a lot of “stdout” and “stderr” messages. When the command
finishes, a final “header” line is added with the exit code of the process.

Status display plugins can format these different channels in different ways. For example,
the web page shows LogFiles as text/html, with header lines in blue text, stdout in black,
and stderr in red. A different URL is available which provides a text/plain format, in which
stdout and stderr are collapsed together, and header lines are stripped completely. This
latter option makes it easy to save the results to a file and run grep or whatever against
the output.

Each BuildStep contains a mapping (implemented in a python dictionary) from LogFile
name to the actual LogFile objects. Status plugins can get a list of LogFiles to display, for
example, a list of HREF links that, when clicked, provide the full contents of the LogFile.

Using LogFiles in custom BuildSteps

The most common way for a custom BuildStep to use a LogFile is to summarize the results
of a ShellCommand (after the command has finished running). For example, a compile

Chapter 6: Build Process 90

step with thousands of lines of output might want to create a summary of just the warning
messages. If you were doing this from a shell, you would use something like:

grep "warning:" output.log >warnings.log

In a custom BuildStep, you could instead create a “warnings” LogFile that contained
the same text. To do this, you would add code to your createSummary method that pulls
lines from the main output log and creates a new LogFile with the results:

def createSummary(self, log):

warnings = []

for line in log.readlines():

if "warning:" in line:

warnings.append()

self.addCompleteLog(’warnings’, "".join(warnings))

This example uses the addCompleteLog method, which creates a new LogFile, puts some
text in it, and then “closes” it, meaning that no further contents will be added. This LogFile
will appear in the HTML display under an HREF with the name “warnings”, since that is
the name of the LogFile.

You can also use addHTMLLog to create a complete (closed) LogFile that contains HTML
instead of plain text. The normal LogFile will be HTML-escaped if presented through a
web page, but the HTML LogFile will not. At the moment this is only used to present
a pretty HTML representation of an otherwise ugly exception traceback when something
goes badly wrong during the BuildStep.

In contrast, you might want to create a new LogFile at the beginning of the step, and
add text to it as the command runs. You can create the LogFile and attach it to the build
by calling addLog, which returns the LogFile object. You then add text to this LogFile
by calling methods like addStdout and addHeader. When you are done, you must call the
finish method so the LogFile can be closed. It may be useful to create and populate a
LogFile like this from a LogObserver method See Section 6.1.11.4 [Adding LogObservers],
page 91.

The logfiles= argument to ShellCommand (see see Section 6.1.4 [ShellCommand],
page 78) creates new LogFiles and fills them in realtime by asking the buildslave to watch a
actual file on disk. The buildslave will look for additions in the target file and report them
back to the BuildStep. These additions will be added to the LogFile by calling addStdout.
These secondary LogFiles can be used as the source of a LogObserver just like the normal
“stdio” LogFile.

6.1.11.3 Reading Logfiles

Once a LogFile has been added to a BuildStep with addLog(), addCompleteLog(),
addHTMLLog(), or logfiles=, your BuildStep can retrieve it by using getLog():

class MyBuildStep(ShellCommand):

logfiles = { "nodelog": "_test/node.log" }

def evaluateCommand(self, cmd):

nodelog = self.getLog("nodelog")

if "STARTED" in nodelog.getText():

return SUCCESS

Chapter 6: Build Process 91

else:

return FAILURE

For a complete list of the methods you can call on a LogFile, please see the docstrings
on the IStatusLog class in ‘buildbot/interfaces.py’.

6.1.11.4 Adding LogObservers

Most shell commands emit messages to stdout or stderr as they operate, especially if you
ask them nicely with a --verbose flag of some sort. They may also write text to a log
file while they run. Your BuildStep can watch this output as it arrives, to keep track of
how much progress the command has made. You can get a better measure of progress by
counting the number of source files compiled or test cases run than by merely tracking the
number of bytes that have been written to stdout. This improves the accuracy and the
smoothness of the ETA display.

To accomplish this, you will need to attach a LogObserver to one of the log channels,
most commonly to the “stdio” channel but perhaps to another one which tracks a log file.
This observer is given all text as it is emitted from the command, and has the opportunity
to parse that output incrementally. Once the observer has decided that some event has
occurred (like a source file being compiled), it can use the setProgress method to tell the
BuildStep about the progress that this event represents.

There are a number of pre-built LogObserver classes that you can choose from (defined
in buildbot.process.buildstep, and of course you can subclass them to add further cus-
tomization. The LogLineObserver class handles the grunt work of buffering and scanning
for end-of-line delimiters, allowing your parser to operate on complete stdout/stderr lines.
(Lines longer than a set maximum length are dropped; the maximum defaults to 16384
bytes, but you can change it by calling setMaxLineLength() on your LogLineObserver

instance. Use sys.maxint for effective infinity.)

For example, let’s take a look at the TrialTestCaseCounter, which is used by the Trial
step to count test cases as they are run. As Trial executes, it emits lines like the following:

buildbot.test.test_config.ConfigTest.testDebugPassword ... [OK]

buildbot.test.test_config.ConfigTest.testEmpty ... [OK]

buildbot.test.test_config.ConfigTest.testIRC ... [FAIL]

buildbot.test.test_config.ConfigTest.testLocks ... [OK]

When the tests are finished, trial emits a long line of “======” and then some lines
which summarize the tests that failed. We want to avoid parsing these trailing lines, because
their format is less well-defined than the “[OK]” lines.

The parser class looks like this:

from buildbot.process.buildstep import LogLineObserver

class TrialTestCaseCounter(LogLineObserver):

_line_re = re.compile(r’^([\w\.]+) \.\.\. \[([^\]]+)\]$’)

numTests = 0

finished = False

def outLineReceived(self, line):

if self.finished:

Chapter 6: Build Process 92

return

if line.startswith("=" * 40):

self.finished = True

return

m = self._line_re.search(line.strip())

if m:

testname, result = m.groups()

self.numTests += 1

self.step.setProgress(’tests’, self.numTests)

This parser only pays attention to stdout, since that’s where trial writes the progress
lines. It has a mode flag named finished to ignore everything after the “====” marker,
and a scary-looking regular expression to match each line while hopefully ignoring other
messages that might get displayed as the test runs.

Each time it identifies a test has been completed, it increments its counter and delivers
the new progress value to the step with self.step.setProgress. This class is specifically
measuring progress along the “tests” metric, in units of test cases (as opposed to other
kinds of progress like the “output” metric, which measures in units of bytes). The Progress-
tracking code uses each progress metric separately to come up with an overall completion
percentage and an ETA value.

To connect this parser into the Trial BuildStep, Trial.__init__ ends with the follow-
ing clause:

this counter will feed Progress along the ’test cases’ metric

counter = TrialTestCaseCounter()

self.addLogObserver(’stdio’, counter)

self.progressMetrics += (’tests’,)

This creates a TrialTestCaseCounter and tells the step that the counter wants to watch
the “stdio” log. The observer is automatically given a reference to the step in its .step

attribute.

A Somewhat Whimsical Example

Let’s say that we’ve got some snazzy new unit-test framework called Framboozle. It’s
the hottest thing since sliced bread. It slices, it dices, it runs unit tests like there’s no
tomorrow. Plus if your unit tests fail, you can use its name for a Web 2.1 startup company,
make millions of dollars, and hire engineers to fix the bugs for you, while you spend your
afternoons lazily hang-gliding along a scenic pacific beach, blissfully unconcerned about the
state of your tests.2

To run a Framboozle-enabled test suite, you just run the ’framboozler’ command from
the top of your source code tree. The ’framboozler’ command emits a bunch of stuff to
stdout, but the most interesting bit is that it emits the line "FNURRRGH!" every time
it finishes running a test case3. You’d like to have a test-case counting LogObserver that
watches for these lines and counts them, because counting them will help the buildbot more
accurately calculate how long the build will take, and this will let you know exactly how

2 framboozle.com is still available. Remember, I get 10% :).
3 Framboozle gets very excited about running unit tests.

Chapter 6: Build Process 93

long you can sneak out of the office for your hang-gliding lessons without anyone noticing
that you’re gone.

This will involve writing a new BuildStep (probably named "Framboozle") which inherits
from ShellCommand. The BuildStep class definition itself will look something like this:

START

from buildbot.steps.shell import ShellCommand

from buildbot.process.buildstep import LogLineObserver

class FNURRRGHCounter(LogLineObserver):

numTests = 0

def outLineReceived(self, line):

if "FNURRRGH!" in line:

self.numTests += 1

self.step.setProgress(’tests’, self.numTests)

class Framboozle(ShellCommand):

command = ["framboozler"]

def __init__(self, **kwargs):

ShellCommand.__init__(self, **kwargs) # always upcall!

counter = FNURRRGHCounter())

self.addLogObserver(’stdio’, counter)

self.progressMetrics += (’tests’,)

FINISH

So that’s the code that we want to wind up using. How do we actually deploy it?

You have a couple of different options.

Option 1: The simplest technique is to simply put this text (everything from START to
FINISH) in your master.cfg file, somewhere before the BuildFactory definition where you
actually use it in a clause like:

f = BuildFactory()

f.addStep(SVN(svnurl="stuff"))

f.addStep(Framboozle())

Remember that master.cfg is secretly just a python program with one job: populating
the BuildmasterConfig dictionary. And python programs are allowed to define as many
classes as they like. So you can define classes and use them in the same file, just as long as
the class is defined before some other code tries to use it.

This is easy, and it keeps the point of definition very close to the point of use, and
whoever replaces you after that unfortunate hang-gliding accident will appreciate being
able to easily figure out what the heck this stupid "Framboozle" step is doing anyways.
The downside is that every time you reload the config file, the Framboozle class will get
redefined, which means that the buildmaster will think that you’ve reconfigured all the
Builders that use it, even though nothing changed. Bleh.

Option 2: Instead, we can put this code in a separate file, and import it into the
master.cfg file just like we would the normal buildsteps like ShellCommand and SVN.

Chapter 6: Build Process 94

Create a directory named ~/lib/python, put everything from START to FINISH in
~/lib/python/framboozle.py, and run your buildmaster using:

PYTHONPATH=~/lib/python buildbot start MASTERDIR

or use the ‘Makefile.buildbot’ to control the way buildbot start works. Or add
something like this to something like your ~/.bashrc or ~/.bash profile or ~/.cshrc:

export PYTHONPATH=~/lib/python

Once we’ve done this, our master.cfg can look like:

from framboozle import Framboozle

f = BuildFactory()

f.addStep(SVN(svnurl="stuff"))

f.addStep(Framboozle())

or:

import framboozle

f = BuildFactory()

f.addStep(SVN(svnurl="stuff"))

f.addStep(framboozle.Framboozle())

(check out the python docs for details about how "import" and "from A import B"
work).

What we’ve done here is to tell python that every time it handles an "import" statement
for some named module, it should look in our ~/lib/python/ for that module before it
looks anywhere else. After our directories, it will try in a bunch of standard directories too
(including the one where buildbot is installed). By setting the PYTHONPATH environment
variable, you can add directories to the front of this search list.

Python knows that once it "import"s a file, it doesn’t need to re-import it again. This
means that reconfiguring the buildmaster (with "buildbot reconfig", for example) won’t
make it think the Framboozle class has changed every time, so the Builders that use it will
not be spuriously restarted. On the other hand, you either have to start your buildmaster
in a slightly weird way, or you have to modify your environment to set the PYTHONPATH
variable.

Option 3: Install this code into a standard python library directory

Find out what your python’s standard include path is by asking it:

80:warner@luther% python

Python 2.4.4c0 (#2, Oct 2 2006, 00:57:46)

[GCC 4.1.2 20060928 (prerelease) (Debian 4.1.1-15)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import sys

>>> import pprint

>>> pprint.pprint(sys.path)

[’’,

’/usr/lib/python24.zip’,

’/usr/lib/python2.4’,

’/usr/lib/python2.4/plat-linux2’,

’/usr/lib/python2.4/lib-tk’,

’/usr/lib/python2.4/lib-dynload’,

Chapter 6: Build Process 95

’/usr/local/lib/python2.4/site-packages’,

’/usr/lib/python2.4/site-packages’,

’/usr/lib/python2.4/site-packages/Numeric’,

’/var/lib/python-support/python2.4’,

’/usr/lib/site-python’]

In this case, putting the code into /usr/local/lib/python2.4/site-packages/framboozle.py
would work just fine. We can use the same master.cfg "import framboozle" statement as
in Option 2. By putting it in a standard include directory (instead of the decidedly non-
standard ~/lib/python), we don’t even have to set PYTHONPATH to anything special.
The downside is that you probably have to be root to write to one of those standard include
directories.

Option 4: Submit the code for inclusion in the Buildbot distribution

Make a fork of buildbot on http://github.com/djmitche/buildbot or post a patch in a
bug at http://buildbot.net. In either case, post a note about your patch to the mailing list,
so others can provide feedback and, eventually, commit it.

from buildbot.steps import framboozle

f = BuildFactory()

f.addStep(SVN(svnurl="stuff"))

f.addStep(framboozle.Framboozle())

And then you don’t even have to install framboozle.py anywhere on your system, since it
will ship with Buildbot. You don’t have to be root, you don’t have to set PYTHONPATH.
But you do have to make a good case for Framboozle being worth going into the main
distribution, you’ll probably have to provide docs and some unit test cases, you’ll need to
figure out what kind of beer the author likes, and then you’ll have to wait until the next
release. But in some environments, all this is easier than getting root on your buildmaster
box, so the tradeoffs may actually be worth it.

Putting the code in master.cfg (1) makes it available to that buildmaster instance.
Putting it in a file in a personal library directory (2) makes it available for any build-
masters you might be running. Putting it in a file in a system-wide shared library directory
(3) makes it available for any buildmasters that anyone on that system might be running.
Getting it into the buildbot’s upstream repository (4) makes it available for any buildmas-
ters that anyone in the world might be running. It’s all a matter of how widely you want
to deploy that new class.

6.1.11.5 BuildStep URLs

Each BuildStep has a collection of “links”. Like its collection of LogFiles, each link has a
name and a target URL. The web status page creates HREFs for each link in the same box
as it does for LogFiles, except that the target of the link is the external URL instead of an
internal link to a page that shows the contents of the LogFile.

These external links can be used to point at build information hosted on other servers.
For example, the test process might produce an intricate description of which tests passed
and failed, or some sort of code coverage data in HTML form, or a PNG or GIF image with
a graph of memory usage over time. The external link can provide an easy way for users to
navigate from the buildbot’s status page to these external web sites or file servers. Note that
the step itself is responsible for insuring that there will be a document available at the given

Chapter 6: Build Process 96

URL (perhaps by using scp to copy the HTML output to a ‘~/public_html/’ directory on
a remote web server). Calling addURL does not magically populate a web server.

To set one of these links, the BuildStep should call the addURL method with the name
of the link and the target URL. Multiple URLs can be set.

In this example, we assume that the make test command causes a collection of HTML
files to be created and put somewhere on the coverage.example.org web server, in a filename
that incorporates the build number.

class TestWithCodeCoverage(BuildStep):

command = ["make", "test",

WithProperties("buildnum=%s", "buildnumber")]

def createSummary(self, log):

buildnumber = self.getProperty("buildnumber")

url = "http://coverage.example.org/builds/%s.html" % buildnumber

self.addURL("coverage", url)

You might also want to extract the URL from some special message output by the build
process itself:

class TestWithCodeCoverage(BuildStep):

command = ["make", "test",

WithProperties("buildnum=%s", "buildnumber")]

def createSummary(self, log):

output = StringIO(log.getText())

for line in output.readlines():

if line.startswith("coverage-url:"):

url = line[len("coverage-url:"):].strip()

self.addURL("coverage", url)

return

Note that a build process which emits both stdout and stderr might cause this line to
be split or interleaved between other lines. It might be necessary to restrict the getText()
call to only stdout with something like this:

output = StringIO("".join([c[1]

for c in log.getChunks()

if c[0] == LOG_CHANNEL_STDOUT]))

Of course if the build is run under a PTY, then stdout and stderr will be merged before
the buildbot ever sees them, so such interleaving will be unavoidable.

6.2 Interlocks

Until now, we assumed that a master can run builds at any slave whenever needed or
desired. Some times, you want to enforce additional constraints on builds. For reasons like
limited network bandwidth, old slave machines, or a self-willed data base server, you may
want to limit the number of builds (or build steps) that can access a resource.

Chapter 6: Build Process 97

The mechanism used by Buildbot is known as the read/write lock.4 It allows either
many readers or a single writer but not a combination of readers and writers. The general
lock has been modified and extended for use in Buildbot. Firstly, the general lock allows
an infinite number of readers. In Buildbot, we often want to put an upper limit on the
number of readers, for example allowing two out of five possible builds at the same time.
To do this, the lock counts the number of active readers. Secondly, the terms read mode

and write mode are confusing in Buildbot context. They have been replaced by counting

mode (since the lock counts them) and exclusive mode. As a result of these changes, locks
in Buildbot allow a number of builds (upto some fixed number) in counting mode, or they
allow one build in exclusive mode.

Often, not all slaves are equal. To allow for this situation, Buildbot allows to have a
separate upper limit on the count for each slave. In this way, you can have at most 3
concurrent builds at a fast slave, 2 at a slightly older slave, and 1 at all other slaves.

The final thing you can specify when you introduce a new lock is its scope. Some
constraints are global – they must be enforced over all slaves. Other constraints are local
to each slave. A master lock is used for the global constraints. You can ensure for example
that at most one build (of all builds running at all slaves) accesses the data base server.
With a slave lock you can add a limit local to each slave. With such a lock, you can for
example enforce an upper limit to the number of active builds at a slave, like above.

Time for a few examples. Below a master lock is defined to protect a data base, and a
slave lock is created to limit the number of builds at each slave.

from buildbot import locks

db_lock = locks.MasterLock("database")

build_lock = locks.SlaveLock("slave_builds",

maxCount = 1,

maxCountForSlave = { ’fast’: 3, ’new’: 2 })

After importing locks from buildbot, db_lock is defined to be a master lock. The
"database" string is used for uniquely identifying the lock. At the next line, a slave
lock called build_lock is created. It is identified by the "slave_builds" string. Since
the requirements of the lock are a bit more complicated, two optional arguments are also
specified. The maxCount parameter sets the default limit for builds in counting mode to
1. For the slave called ’fast’ however, we want to have at most three builds, and for the
slave called ’new’ the upper limit is two builds running at the same time.

The next step is using the locks in builds. Buildbot allows a lock to be used during an
entire build (from beginning to end), or only during a single build step. In the latter case,
the lock is claimed for use just before the step starts, and released again when the step
ends. To prevent deadlocks,5 it is not possible to claim or release locks at other times.

To use locks, you should add them with a locks argument. Each use of a lock is either
in counting mode (that is, possibly shared with other builds) or in exclusive mode. A build

4 See http://en.wikipedia.org/wiki/Read/write lock pattern for more information.
5 Deadlock is the situation where two or more slaves each hold a lock in exclusive mode, and in addition

want to claim the lock held by the other slave exclusively as well. Since locks allow at most one exclusive
user, both slaves will wait forever.

Chapter 6: Build Process 98

or build step proceeds only when it has acquired all locks. If a build or step needs a lot of
locks, it may be starved6 by other builds that need fewer locks.

To illustrate use of locks, a few examples.

from buildbot import locks

from buildbot.steps import source, shell

from buildbot.process import factory

db_lock = locks.MasterLock("database")

build_lock = locks.SlaveLock("slave_builds",

maxCount = 1,

maxCountForSlave = { ’fast’: 3, ’new’: 2 })

f = factory.BuildFactory()

f.addStep(source.SVN(svnurl="http://example.org/svn/Trunk"))

f.addStep(shell.ShellCommand(command="make all"))

f.addStep(shell.ShellCommand(command="make test",

locks=[db_lock.access(’exclusive’)]))

b1 = {’name’: ’full1’, ’slavename’: ’fast’, ’builddir’: ’f1’, ’factory’: f,

’locks’: [build_lock.access(’counting’)] }

b2 = {’name’: ’full2’, ’slavename’: ’new’, ’builddir’: ’f2’, ’factory’: f.

’locks’: [build_lock.access(’counting’)] }

b3 = {’name’: ’full3’, ’slavename’: ’old’, ’builddir’: ’f3’, ’factory’: f.

’locks’: [build_lock.access(’counting’)] }

b4 = {’name’: ’full4’, ’slavename’: ’other’, ’builddir’: ’f4’, ’factory’: f.

’locks’: [build_lock.access(’counting’)] }

c[’builders’] = [b1, b2, b3, b4]

Here we have four slaves b1, b2, b3, and b4. Each slave performs the same checkout,
make, and test build step sequence. We want to enforce that at most one test step is
executed between all slaves due to restrictions with the data base server. This is done by
adding the locks= parameter with the third step. It takes a list of locks with their access
mode. In this case only the db_lock is needed. The exclusive access mode is used to ensure
there is at most one slave that executes the test step.

In addition to exclusive accessing the data base, we also want slaves to stay responsive

even under the load of a large number of builds being triggered. For this purpose, the slave

lock called build_lock is defined. Since the restraint holds for entire builds, the lock is

specified in the builder with ’locks’: [build_lock.access(’counting’)].

6 Starving is the situation that only a few locks are available, and they are immediately grabbed by another
build. As a result, it may take a long time before all locks needed by the starved build are free at the
same time.

Chapter 6: Build Process 99

6.3 Build Factories

Each Builder is equipped with a “build factory”, which is responsible for producing the
actual Build objects that perform each build. This factory is created in the configuration
file, and attached to a Builder through the factory element of its dictionary.

The standard BuildFactory object creates Build objects by default. These Builds will
each execute a collection of BuildSteps in a fixed sequence. Each step can affect the results
of the build, but in general there is little intelligence to tie the different steps together.
You can create subclasses of Build to implement more sophisticated build processes, and
then use a subclass of BuildFactory (or simply set the buildClass attribute) to create
instances of your new Build subclass.

6.3.1 BuildStep Objects

The steps used by these builds are all subclasses of BuildStep. The standard ones provided
with Buildbot are documented later, See Section 6.1 [Build Steps], page 66. You can also
write your own subclasses to use in builds.

The basic behavior for a BuildStep is to:

• run for a while, then stop

• possibly invoke some RemoteCommands on the attached build slave

• possibly produce a set of log files

• finish with a status described by one of four values defined in buildbot.status.builder:
SUCCESS, WARNINGS, FAILURE, SKIPPED

• provide a list of short strings to describe the step

• define a color (generally green, orange, or red) with which the step should be displayed

More sophisticated steps may produce additional information and provide it to later
build steps, or store it in the factory to provide to later builds.

6.3.2 BuildFactory

The default BuildFactory, provided in the buildbot.process.factory module, contains
an internal list of “BuildStep specifications”: a list of (step_class, kwargs) tuples for
each. These specification tuples are constructed when the config file is read, by asking the
instances passed to addStep for their subclass and arguments.

When asked to create a Build, the BuildFactory puts a copy of the list of step specifica-
tions into the new Build object. When the Build is actually started, these step specifications
are used to create the actual set of BuildSteps, which are then executed one at a time. This
serves to give each Build an independent copy of each step. For example, a build which
consists of a CVS checkout followed by a make build would be constructed as follows:

from buildbot.steps import source, shell

from buildbot.process import factory

f = factory.BuildFactory()

f.addStep(source.CVS(cvsroot=CVSROOT, cvsmodule="project", mode="update"))

f.addStep(shell.Compile(command=["make", "build"]))

(To support config files from buildbot-0.7.5 and earlier, addStep also accepts the
f.addStep(shell.Compile, command=["make","build"]) form, although its use is

Chapter 6: Build Process 100

discouraged because then the Compile step doesn’t get to validate or complain about its
arguments until build time. The modern pass-by-instance approach allows this validation
to occur while the config file is being loaded, where the admin has a better chance of
noticing problems).

It is also possible to pass a list of steps into the BuildFactory when it is created. Using
addStep is usually simpler, but there are cases where is is more convenient to create the
list of steps ahead of time.:

from buildbot.steps import source, shell

from buildbot.process import factory

all_steps = [source.CVS(cvsroot=CVSROOT, cvsmodule="project", mode="update"),

shell.Compile(command=["make", "build"]),

]

f = factory.BuildFactory(all_steps)

Each step can affect the build process in the following ways:

• If the step’s haltOnFailure attribute is True, then a failure in the step (i.e. if it com-
pletes with a result of FAILURE) will cause the whole build to be terminated imme-
diately: no further steps will be executed, with the exception of steps with alwaysRun

set to True. haltOnFailure is useful for setup steps upon which the rest of the build
depends: if the CVS checkout or ./configure process fails, there is no point in trying
to compile or test the resulting tree.

• If the step’s alwaysRun attribute is True, then it will always be run, regardless of if
previous steps have failed. This is useful for cleanup steps that should always be run
to return the build directory or build slave into a good state.

• If the flunkOnFailure or flunkOnWarnings flag is set, then a result of FAILURE or
WARNINGS will mark the build as a whole as FAILED. However, the remaining steps
will still be executed. This is appropriate for things like multiple testing steps: a failure
in any one of them will indicate that the build has failed, however it is still useful to
run them all to completion.

• Similarly, if the warnOnFailure or warnOnWarnings flag is set, then a result of FAIL-
URE or WARNINGS will mark the build as having WARNINGS, and the remaining
steps will still be executed. This may be appropriate for certain kinds of optional
build or test steps. For example, a failure experienced while building documentation
files should be made visible with a WARNINGS result but not be serious enough to
warrant marking the whole build with a FAILURE.

In addition, each Step produces its own results, may create logfiles, etc. However only
the flags described above have any effect on the build as a whole.

The pre-defined BuildSteps like CVS and Compile have reasonably appropriate flags set
on them already. For example, without a source tree there is no point in continuing the build,
so the CVS class has the haltOnFailure flag set to True. Look in ‘buildbot/steps/*.py’
to see how the other Steps are marked.

Each Step is created with an additional workdir argument that indicates where its
actions should take place. This is specified as a subdirectory of the slave builder’s base
directory, with a default value of build. This is only implemented as a step argument (as

Chapter 6: Build Process 101

opposed to simply being a part of the base directory) because the CVS/SVN steps need to
perform their checkouts from the parent directory.

6.3.2.1 BuildFactory Attributes

Some attributes from the BuildFactory are copied into each Build.

useProgress

(defaults to True): if True, the buildmaster keeps track of how long each step
takes, so it can provide estimates of how long future builds will take. If builds
are not expected to take a consistent amount of time (such as incremental builds
in which a random set of files are recompiled or tested each time), this should
be set to False to inhibit progress-tracking.

6.3.2.2 Quick builds

The difference between a “full build” and a “quick build” is that quick builds are generally
done incrementally, starting with the tree where the previous build was performed. That
simply means that the source-checkout step should be given a mode=’update’ flag, to do
the source update in-place.

In addition to that, the useProgress flag should be set to False. Incremental builds will
(or at least the ought to) compile as few files as necessary, so they will take an unpredictable
amount of time to run. Therefore it would be misleading to claim to predict how long the
build will take.

6.3.3 Process-Specific build factories

Many projects use one of a few popular build frameworks to simplify the creation and
maintenance of Makefiles or other compilation structures. Buildbot provides several pre-
configured BuildFactory subclasses which let you build these projects with a minimum of
fuss.

6.3.3.1 GNUAutoconf

GNU Autoconf (http://www.gnu.org/software/autoconf/) is a software portability tool,
intended to make it possible to write programs in C (and other languages) which will run on
a variety of UNIX-like systems. Most GNU software is built using autoconf. It is frequently
used in combination with GNU automake. These tools both encourage a build process
which usually looks like this:

% CONFIG_ENV=foo ./configure --with-flags

% make all

% make check

make install

(except of course the Buildbot always skips the make install part).

The Buildbot’s buildbot.process.factory.GNUAutoconf factory is designed to build
projects which use GNU autoconf and/or automake. The configuration environment vari-
ables, the configure flags, and command lines used for the compile and test are all config-
urable, in general the default values will be suitable.

Example:

Chapter 6: Build Process 102

use the s() convenience function defined earlier

f = factory.GNUAutoconf(source=s(source.SVN, svnurl=URL, mode="copy"),

flags=["--disable-nls"])

Required Arguments:

source This argument must be a step specification tuple that provides a BuildStep to
generate the source tree.

Optional Arguments:

configure

The command used to configure the tree. Defaults to ./configure. Accepts
either a string or a list of shell argv elements.

configureEnv

The environment used for the initial configuration step. This accepts a dic-
tionary which will be merged into the buildslave’s normal environment. This
is commonly used to provide things like CFLAGS="-O2 -g" (to turn off debug
symbols during the compile). Defaults to an empty dictionary.

configureFlags

A list of flags to be appended to the argument list of the configure command.
This is commonly used to enable or disable specific features of the autoconf-
controlled package, like ["--without-x"] to disable windowing support. De-
faults to an empty list.

compile this is a shell command or list of argv values which is used to actually compile
the tree. It defaults to make all. If set to None, the compile step is skipped.

test this is a shell command or list of argv values which is used to run the tree’s
self-tests. It defaults to make check. If set to None, the test step is skipped.

6.3.3.2 CPAN

Most Perl modules available from the CPAN (http://www.cpan.org/) archive use the
MakeMaker module to provide configuration, build, and test services. The standard build
routine for these modules looks like:

% perl Makefile.PL

% make

% make test

make install

(except again Buildbot skips the install step)

Buildbot provides a CPAN factory to compile and test these projects.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

perl A string which specifies the perl executable to use. Defaults to just perl.

Chapter 6: Build Process 103

6.3.3.3 Python distutils

Most Python modules use the distutils package to provide configuration and build ser-
vices. The standard build process looks like:

% python ./setup.py build

% python ./setup.py install

Unfortunately, although Python provides a standard unit-test framework named
unittest, to the best of my knowledge distutils does not provide a standardized target
to run such unit tests. (Please let me know if I’m wrong, and I will update this factory.)

The Distutils factory provides support for running the build part of this process. It
accepts the same source= parameter as the other build factories.

Arguments:

source (required): A step specification tuple, like that used by GNUAutoconf.

python A string which specifies the python executable to use. Defaults to just python.

test Provides a shell command which runs unit tests. This accepts either a string
or a list. The default value is None, which disables the test step (since there is
no common default command to run unit tests in distutils modules).

6.3.3.4 Python/Twisted/trial projects

Twisted provides a unit test tool named trial which provides a few improvements over
Python’s built-in unittest module. Many python projects which use Twisted for their
networking or application services also use trial for their unit tests. These modules are
usually built and tested with something like the following:

% python ./setup.py build

% PYTHONPATH=build/lib.linux-i686-2.3 trial -v PROJECTNAME.test

% python ./setup.py install

Unfortunately, the ‘build/lib’ directory into which the built/copied .py files are placed
is actually architecture-dependent, and I do not yet know of a simple way to calculate its
value. For many projects it is sufficient to import their libraries “in place” from the tree’s
base directory (PYTHONPATH=.).

In addition, the PROJECTNAME value where the test files are located is project-
dependent: it is usually just the project’s top-level library directory, as common practice
suggests the unit test files are put in the test sub-module. This value cannot be guessed,
the Trial class must be told where to find the test files.

The Trial class provides support for building and testing projects which use distutils
and trial. If the test module name is specified, trial will be invoked. The library path used
for testing can also be set.

One advantage of trial is that the Buildbot happens to know how to parse trial output,
letting it identify which tests passed and which ones failed. The Buildbot can then provide
fine-grained reports about how many tests have failed, when individual tests fail when they
had been passing previously, etc.

Another feature of trial is that you can give it a series of source .py files, and it will search
them for special test-case-name tags that indicate which test cases provide coverage for

Chapter 6: Build Process 104

that file. Trial can then run just the appropriate tests. This is useful for quick builds, where
you want to only run the test cases that cover the changed functionality.

Arguments:

testpath Provides a directory to add to PYTHONPATH when running the unit tests, if
tests are being run. Defaults to . to include the project files in-place. The
generated build library is frequently architecture-dependent, but may simply
be ‘build/lib’ for pure-python modules.

python which python executable to use. This list will form the start of the argv array
that will launch trial. If you use this, you should set trial to an explicit
path (like /usr/bin/trial or ./bin/trial). The parameter defaults to
None, which leaves it out entirely (running trial args instead of python

./bin/trial args). Likely values are [’python’], [’python2.2’], or
[’python’, ’-Wall’].

trial provides the name of the trial command. It is occasionally useful to use an
alternate executable, such as trial2.2 which might run the tests under an
older version of Python. Defaults to trial.

trialMode

a list of arguments to pass to trial, specifically to set the reporting mode. This
defaults to [’--reporter=bwverbose’], which only works for Twisted-2.1.0
and later.

trialArgs

a list of arguments to pass to trial, available to turn on any extra flags you like.
Defaults to [].

tests Provides a module name or names which contain the unit tests for this project.
Accepts a string, typically PROJECTNAME.test, or a list of strings. Defaults
to None, indicating that no tests should be run. You must either set this or
testChanges.

testChanges

if True, ignore the tests parameter and instead ask the Build for all the files
that make up the Changes going into this build. Pass these filenames to trial
and ask it to look for test-case-name tags, running just the tests necessary to
cover the changes.

recurse If True, tells Trial (with the --recurse argument) to look in all subdirectories
for additional test cases.

reactor which reactor to use, like ’gtk’ or ’java’. If not provided, the Twisted’s usual
platform-dependent default is used.

randomly If True, tells Trial (with the --random=0 argument) to run the test cases in
random order, which sometimes catches subtle inter-test dependency bugs. De-
faults to False.

The step can also take any of the ShellCommand arguments, e.g., haltOnFailure.

Unless one of tests or testChanges are set, the step will generate an exception.

Chapter 7: Status Delivery 105

7 Status Delivery

More details are available in the docstrings for each class, use a command like pydoc

buildbot.status.html.WebStatus to see them. Most status delivery objects take a
categories= argument, which can contain a list of “category” names: in this case, it will
only show status for Builders that are in one of the named categories.

(implementor’s note: each of these objects should be a service.MultiService which will
be attached to the BuildMaster object when the configuration is processed. They should
use self.parent.getStatus() to get access to the top-level IStatus object, either inside
startService or later. They may call status.subscribe() in startService to receive
notifications of builder events, in which case they must define builderAdded and related
methods. See the docstrings in ‘buildbot/interfaces.py’ for full details.)

7.1 WebStatus

The buildbot.status.html.WebStatus status target runs a small web server inside the
buildmaster. You can point a browser at this web server and retrieve information about
every build the buildbot knows about, as well as find out what the buildbot is currently
working on.

The first page you will see is the “Welcome Page”, which contains links to all the other
useful pages. This page is simply served from the ‘public_html/index.html’ file in the
buildmaster’s base directory, where it is created by the buildbot create-master command
along with the rest of the buildmaster.

The most complex resource provided by WebStatus is the “Waterfall Display”, which
shows a time-based chart of events. This somewhat-busy display provides detailed informa-
tion about all steps of all recent builds, and provides hyperlinks to look at individual build
logs and source changes. By simply reloading this page on a regular basis, you will see a
complete description of everything the buildbot is currently working on.

A similar, but more developer-oriented display is the "Grid" display. This arranges
builds by SourceStamp (horizontal axis) and builder (vertical axis), and can provide quick
information as to which revisions are passing or failing on which builders.

There are also pages with more specialized information. For example, there is a page
which shows the last 20 builds performed by the buildbot, one line each. Each line is a link
to detailed information about that build. By adding query arguments to the URL used to
reach this page, you can narrow the display to builds that involved certain branches, or
which ran on certain Builders. These pages are described in great detail below.

When the buildmaster is created, a subdirectory named ‘public_html/’ is created in
its base directory. By default, WebStatus will serve files from this directory: for exam-
ple, when a user points their browser at the buildbot’s WebStatus URL, they will see
the contents of the ‘public_html/index.html’ file. Likewise, ‘public_html/robots.txt’,
‘public_html/buildbot.css’, and ‘public_html/favicon.ico’ are all useful things to
have in there. The first time a buildmaster is created, the ‘public_html’ directory is pop-
ulated with some sample files, which you will probably want to customize for your own
project. These files are all static: the buildbot does not modify them in any way as it serves
them to HTTP clients.

Chapter 7: Status Delivery 106

from buildbot.status.html import WebStatus

c[’status’].append(WebStatus(8080))

Note that the initial robots.txt file has Disallow lines for all of the dynamically-generated
buildbot pages, to discourage web spiders and search engines from consuming a lot of CPU
time as they crawl through the entire history of your buildbot. If you are running the
buildbot behind a reverse proxy, you’ll probably need to put the robots.txt file somewhere
else (at the top level of the parent web server), and replace the URL prefixes in it with
more suitable values.

If you would like to use an alternative root directory, add the public_html=.. option
to the WebStatus creation:

c[’status’].append(WebStatus(8080, public_html="/var/www/buildbot"))

In addition, if you are familiar with twisted.web Resource Trees, you can write code to
add additional pages at places inside this web space. Just use webstatus.putChild to
place these resources.

The following section describes the special URLs and the status views they provide.

7.1.1 WebStatus Configuration Parameters

The most common way to run a WebStatus is on a regular TCP port. To do this, just
pass in the TCP port number when you create the WebStatus instance; this is called the
http_port argument:

from buildbot.status.html import WebStatus

c[’status’].append(WebStatus(8080))

The http_port argument is actually a “strports specification” for the port that
the web server should listen on. This can be a simple port number, or a string like
tcp:8080:interface=127.0.0.1 (to limit connections to the loopback interface, and
therefore to clients running on the same host)1.

If instead (or in addition) you provide the distrib_port argument, a twisted.web dis-
tributed server will be started either on a TCP port (if distrib_port is like "tcp:12345")
or more likely on a UNIX socket (if distrib_port is like "unix:/path/to/socket").

The distrib_port option means that, on a host with a suitably-configured twisted-web
server, you do not need to consume a separate TCP port for the buildmaster’s
status web page. When the web server is constructed with mktap web --user,
URLs that point to http://host/~username/ are dispatched to a sub-server that
is listening on a UNIX socket at ~username/.twisted-web-pb. On such a system,
it is convenient to create a dedicated buildbot user, then set distrib_port to
"unix:"+os.path.expanduser("~/.twistd-web-pb"). This configuration will make the
HTML status page available at http://host/~buildbot/ . Suitable URL remapping can
make it appear at http://host/buildbot/, and the right virtual host setup can even
place it at http://buildbot.host/ .

1 It may even be possible to provide SSL access by using a specification like "ssl:12345:privateKey=mykey.pen:certKey=cert.p
but this is completely untested

Chapter 7: Status Delivery 107

7.1.2 Enabling the "Force Build" Button

An important WebStatus argument is allowForce. If set to True, then the web page will
provide a “Force Build” button that allows visitors to manually trigger builds. This is useful
for developers to re-run builds that have failed because of intermittent problems in the test
suite, or because of libraries that were not installed at the time of the previous build. The
default value is False, since it also allows anyone with a web browser to waste computing
resources forcing unnecessary builds.

If you do not wish to allow strangers to cause a build to run or to stop current builds, pass
an instance of status.web.auth.IAuth as a auth keyword argument to WebStatus. The
class BasicAuth implements a basic authentication mechanism using a list of user/password
tuples provided from the configuration file. The class HTPasswdAuth implements an authen-
tication against an ‘.htpasswd’ file.

from buildbot.status.html import WebStatus

from buildbot.status.web.auth import BasicAuth

users = [(’bob’, ’secret-pass’), (’jill’, ’super-pass’)]

c[’status’].append(WebStatus(http_port=8080, auth=BasicAuth(users)))

from buildbot.status.web.auth import HTPasswdAuth

file = ’/path/to/file’

c[’status’].append(WebStatus(http_port=8080, auth=(HTPasswdAuth(file))))

7.1.3 Buildbot Web Resources

Certain URLs are “magic”, and the pages they serve are created by code in various classes
in the ‘buildbot.status.web’ package instead of being read from disk. The most common
way to access these pages is for the buildmaster admin to write or modify the ‘index.html’
page to contain links to them. Of course other project web pages can contain links to these
buildbot pages as well.

Many pages can be modified by adding query arguments to the URL. For example, a
page which shows the results of the most recent build normally does this for all builders at
once. But by appending “?builder=i386” to the end of the URL, the page will show only
the results for the “i386” builder. When used in this way, you can add multiple “builder=”
arguments to see multiple builders. Remembering that URL query arguments are separated
from each other with ampersands, a URL that ends in “?builder=i386&builder=ppc” would
show builds for just those two Builders.

The branch= query argument can be used on some pages. This filters the informa-
tion displayed by that page down to only the builds or changes which involved the given
branch. Use branch=trunk to reference the trunk: if you aren’t intentionally using branches,
you’re probably using trunk. Multiple branch= arguments can be used to examine multiple
branches at once (so appending ?branch=foo&branch=bar to the URL will show builds
involving either branch). No branch= arguments means to show builds and changes for all
branches.

Some pages may include the Builder name or the build number in the main part of the
URL itself. For example, a page that describes Build #7 of the “i386” builder would live
at ‘/builders/i386/builds/7’.

Chapter 7: Status Delivery 108

The table below lists all of the internal pages and the URLs that can be used to access
them.

NOTE: of the pages described here, /slave_status_timeline and /last_build have
not yet been implemented, and /xmlrpc has only a few methods so far. Future releases will
improve this.

/waterfall

This provides a chronologically-oriented display of the activity of all builders.
It is the same display used by the Waterfall display.

By adding one or more “builder=” query arguments, the Waterfall is restricted
to only showing information about the given Builders. By adding one or more
“branch=” query arguments, the display is restricted to showing information
about the given branches. In addition, adding one or more “category=” query
arguments to the URL will limit the display to Builders that were defined with
one of the given categories.

A ’show events=true’ query argument causes the display to include non-Build
events, like slaves attaching and detaching, as well as reconfiguration events.
’show events=false’ hides these events. The default is to show them.

By adding the ’failures only=true’ query argument, the Waterfall is restricted
to only showing information about the builders that are currently failing. A
builder is considered failing if the last finished build was not successful, a step
in the current build(s) is failing, or if the builder is offline.

The last_time=, first_time=, and show_time= arguments will control what
interval of time is displayed. The default is to show the latest events, but these
can be used to look at earlier periods in history. The num_events= argument
also provides a limit on the size of the displayed page.

The Waterfall has references to resources many of the other portions of the
URL space: ‘/builders’ for access to individual builds, ‘/changes’ for access
to information about source code changes, etc.

/grid

This provides a chronologically oriented display of builders, by revision. The
builders are listed down the left side of the page, and the revisions are listed
across the top.

By adding one ore more “category=” arguments the grid will be restricted to
revisions in those categories.

A “width=N” argument will limit the number of revisions shown to N, default-
ing to 5.

A “branch=BRANCHNAME” argument will limit the grid to revisions on
branch BRANCHNAME.

/tgrid

The Transposed Grid is similar to the standard grid, but, as the name implies,
transposes the grid: the revisions are listed down the left side of the page, and
the build hosts are listed across the top. It accepts the same query arguments.
The exception being that instead of “width” the argument is named “length.”

Chapter 7: Status Delivery 109

/console

EXPERIMENTAL: This provides a developer-oriented display of the the last
changes and how they affected the builders.

It allows a developer to quickly see the status of each builder for the first build
including his or her change. A green box means that the change succeeded for
all the steps for a given builder. A red box means that the changed introduced
a new regression on a builder. An orange box means that at least one of the
test failed, but it was also failing in the previous build, so it is not possible to
see if there was any regressions from this change. Finally a yellow box means
that the test is in progress.

By adding one or more “builder=” query arguments, the Console view is re-
stricted to only showing information about the given Builders. By adding one
or more “branch=” query arguments, the display is restricted to showing infor-
mation about the given branches. In addition, adding one or more “category=”
query arguments to the URL will limit the display to Builders that were defined
with one of the given categories.

By adding one or more “name=” query arguments, the console view is restricted
to only showing changes made by the given users.

NOTE: To use this page, your buildbot.css file in public html must be the one
found in buildbot/status/web/extended.css.

The console view is still in development. At this moment it supports only the
source control managers that have an integer based revision id, like svn. It also
has some issues with displaying multiple braches at the same time. If you do
have multiple branches, you should use the “branch=” query argument.

/rss

This provides a rss feed summarizing all failed builds. The same
query-arguments used by ’waterfall’ can be added to filter the feed output.

/atom

This provides an atom feed summarizing all failed builds. The same query-
arguments used by ’waterfall’ can be added to filter the feed output.

/buildstatus?builder=$BUILDERNAME&number=$BUILDNUM

This displays a waterfall-like chronologically-oriented view of all the steps for a
given build number on a given builder.

/builders/$BUILDERNAME

This describes the given Builder, and provides buttons to force a build. A
numbuilds= argument will control how many build lines are displayed (5 by
default).

/builders/$BUILDERNAME/builds/$BUILDNUM

This describes a specific Build.

/builders/$BUILDERNAME/builds/$BUILDNUM/steps/$STEPNAME

This describes a specific BuildStep.

/builders/$BUILDERNAME/builds/$BUILDNUM/steps/$STEPNAME/logs/$LOGNAME

This provides an HTML representation of a specific logfile.

Chapter 7: Status Delivery 110

/builders/$BUILDERNAME/builds/$BUILDNUM/steps/$STEPNAME/logs/$LOGNAME/text

This returns the logfile as plain text, without any HTML coloring markup. It
also removes the “headers”, which are the lines that describe what command
was run and what the environment variable settings were like. This maybe be
useful for saving to disk and feeding to tools like ’grep’.

/changes

This provides a brief description of the ChangeSource in use (see Section 5.1
[Change Sources], page 50).

/changes/NN

This shows detailed information about the numbered Change: who was the
author, what files were changed, what revision number was represented, etc.

/buildslaves

This summarizes each BuildSlave, including which Builders are configured to
use it, whether the buildslave is currently connected or not, and host informa-
tion retrieved from the buildslave itself.

/one_line_per_build

This page shows one line of text for each build, merging information from all
Builders2. Each line specifies the name of the Builder, the number of the Build,
what revision it used, and a summary of the results. Successful builds are
in green, while failing builds are in red. The date and time of the build are
added to the right-hand edge of the line. The lines are ordered by build finish
timestamp.

One or more builder= or branch= arguments can be used to restrict the list.
In addition, a numbuilds= argument will control how many lines are displayed
(20 by default).

/one_box_per_builder

This page shows a small table, with one box for each Builder, containing the
results of the most recent Build. It does not show the individual steps, or the
current status. This is a simple summary of buildbot status: if this page is
green, then all tests are passing.

As with /one_line_per_build, this page will also honor builder= and
branch= arguments.

/about

This page gives a brief summary of the Buildbot itself: software version, versions
of some libraries that the Buildbot depends upon, etc. It also contains a link
to the buildbot.net home page.

/slave_status_timeline

(note: this page has not yet been implemented)

This provides a chronological display of configuration and operational events:
master startup/shutdown, slave connect/disconnect, and config-file changes.

2 Apparently this is the same way http://buildd.debian.org displays build status

Chapter 7: Status Delivery 111

When a config-file reload is abandoned because of an error in the config file,
the error is displayed on this page.

This page does not show any builds.

/last_build/$BUILDERNAME/status.png

This returns a PNG image that describes the results of the most recent build,
which can be referenced in an IMG tag by other pages, perhaps from a com-
pletely different site. Use it as you would a webcounter.

There are also a set of web-status resources that are intended for use by other programs,
rather than humans.

/xmlrpc

This runs an XML-RPC server which can be used to query status information
about various builds. See Section 7.1.4 [XMLRPC server], page 111 for more
details.

7.1.4 XMLRPC server

When using WebStatus, the buildbot runs an XML-RPC server at ‘/xmlrpc’ that can be
used by other programs to query build status. The following table lists the methods that
can be invoked using this interface.

getAllBuildsInInterval(start, stop)

Return a list of builds that have completed after the ’start’ timestamp and
before the ’stop’ timestamp. This looks at all Builders.

The timestamps are integers, interpreted as standard unix timestamps (seconds
since epoch).

Each Build is returned as a tuple in the form: (buildername, buildnumber,

build_end, branchname, revision, results, text)

The buildnumber is an integer. ’build end’ is an integer (seconds since epoch)
specifying when the build finished.

The branchname is a string, which may be an empty string to indicate None
(i.e. the default branch). The revision is a string whose meaning is specific
to the VC system in use, and comes from the ’got revision’ build property.
The results are expressed as a string, one of (’success’, ’warnings’, ’failure’,
’exception’). The text is a list of short strings that ought to be joined by spaces
and include slightly more data about the results of the build.

getBuild(builder_name, build_number)

Return information about a specific build.

This returns a dictionary (aka “struct” in XMLRPC terms) with complete
information about the build. It does not include the contents of the log files,
but it has just about everything else.

7.1.5 HTML Waterfall

The Waterfall status target, deprecated as of 0.7.6, is a subset of the regular WebStatus

resource (see Section 7.1 [WebStatus], page 105). This section (and the Waterfall class
itself) will be removed from a future release.

Chapter 7: Status Delivery 112

from buildbot.status import html

w = html.WebStatus(http_port=8080)

c[’status’].append(w)

7.2 MailNotifier

The buildbot can also send email when builds finish. The most common use of this is to
tell developers when their change has caused the build to fail. It is also quite common to
send a message to a mailing list (usually named “builds” or similar) about every build.

The MailNotifier status target is used to accomplish this. You configure it by specifying
who mail should be sent to, under what circumstances mail should be sent, and how to
deliver the mail. It can be configured to only send out mail for certain builders, and only
send messages when the build fails, or when the builder transitions from success to failure.
It can also be configured to include various build logs in each message.

By default, the message will be sent to the Interested Users list (see Section 3.6.1 [Doing
Things With Users], page 25), which includes all developers who made changes in the build.
You can add additional recipients with the extraRecipients argument.

Each MailNotifier sends mail to a single set of recipients. To send different kinds of mail
to different recipients, use multiple MailNotifiers.

The following simple example will send an email upon the completion of each build,
to just those developers whose Changes were included in the build. The email contains a
description of the Build, its results, and URLs where more information can be obtained.

from buildbot.status.mail import MailNotifier

mn = MailNotifier(fromaddr="buildbot@example.org", lookup="example.org")

c[’status’].append(mn)

To get a simple one-message-per-build (say, for a mailing list), use the following form
instead. This form does not send mail to individual developers (and thus does not need
the lookup= argument, explained below), instead it only ever sends mail to the “extra
recipients” named in the arguments:

mn = MailNotifier(fromaddr="buildbot@example.org",

sendToInterestedUsers=False,

extraRecipients=[’listaddr@example.org’])

In some cases it is desirable to have different information then what is provided in
a standard MailNotifier message. For this purpose MailNotifier provides the argument
messageFormatter (a function) which allows for the creation of messages with unique
content.

For example, if only short emails are desired (e.g., for delivery to phones)

from buildbot.status.builder import Results

def messageFormatter(mode, name, build, results, master_status):

result = Results[results]

text = list()

text.append("STATUS: %s" % result.title())

return {

’body’ : "\n".join(text),

Chapter 7: Status Delivery 113

’type’ : ’plain’

}

mn = MailNotifier(fromaddr="buildbot@example.org",

sendToInterestedUsers=False,

mode=’problem’,

extraRecipients=[’listaddr@example.org’],

messageFormatter=messageFormatter)

Another example of a function delivering a customized html email containing the last 80
lines of logs of a failing build step is given below:

from buildbot.status.builder import Results

def message_formatter(mode, name, build, results, master_status):

"""Provide a customized message to BuildBot’s MailNotifier.

The last 80 lines of the log are provided as well as the changes

relevant to the build. Message content is formatted as html.

"""

result = Results[results]

limit_lines = 80

text = list()

text.append(’<h4>Build status: %s</h4>’ % result.upper())

text.append("Buildslave for this Build: %s" % build.getSlavename())

text.append(’
’)

if master_status.getURLForThing(build):

text.append(’Complete logs for all build steps: %s’

% (master_status.getURLForThing(build),

master_status.getURLForThing(build))

)

text.append(’
’)

text.append("Build Reason: %s" % build.getReason())

text.append(’
’)

source = ""

ss = build.getSourceStamp()

if ss.branch:

source += "[branch %s] " % ss.branch

if ss.revision:

source += ss.revision

else:

source += "HEAD"

if ss.patch:

source += " (plus patch)"

text.append("Build Source Stamp: %s" % source)

text.append(’
’)

Chapter 7: Status Delivery 114

text.append("Blamelist: %s" % ",".join(build.getResponsibleUsers()))

if ss.changes:

text.append(’<h4>Recent Changes:</h4>’)

text.extend([c.asHTML() for c in ss.changes])

logs = list()

for log in build.getLogs():

log_name = "%s.%s" % (log.getStep().getName(), log.getName())

log_status, dummy = log.getStep().getResults()

log_body = log.getText().splitlines() # Note: can be VERY LARGE

log_url = ’%s/steps/%s/logs/%s’ % (master_status.getURLForThing(build),

log.getStep().getName(),

log.getName())

logs.append((log_name, log_url, log_body, log_status))

name, url, content, logstatus = logs[-1]

text.append(’<i>Detailed log of last build step:</i> %s’

% (url, url))

text.append(’
’)

text.append(’<h4>Last %d lines of "%s":</h4>’ % (limit_lines, name))

text.append(’<p>’)

text.append(’
’.join([line for line in

content[len(content)-limit_lines:]]))

text.append(’</p>’)

text.append(’

’)

text.append(’-The BuildBot’)

return {

’body’: "\n".join(text),

’type’: ’html’

}

mn = MailNotifier(fromaddr="buildbot@example.org",

sendToInterestedUsers=False,

mode=’failing’,

extraRecipients=[’listaddr@example.org’],

messageFormatter=message_formatter)

MailNotifier arguments

fromaddr The email address to be used in the ’From’ header.

sendToInterestedUsers

(boolean). If True (the default), send mail to all of the Interested Users. If
False, only send mail to the extraRecipients list.

Chapter 7: Status Delivery 115

extraRecipients

(tuple of strings). A list of email addresses to which messages should be sent (in
addition to the InterestedUsers list, which includes any developers who made
Changes that went into this build). It is a good idea to create a small mailing
list and deliver to that, then let subscribers come and go as they please.

subject (string). A string to be used as the subject line of the message. %(builder)s

will be replaced with the name of the builder which provoked the message.

mode (string). Default to ’all’. One of:

all Send mail about all builds, bothpassing and failing

failing Only send mail about builds which fail

problem Only send mail about a build which failed when the previous build
has passed. If your builds usually pass, then this will only send
mail when a problem occurs.

builders (list of strings). A list of builder names for which mail should be sent. Defaults
to None (send mail for all builds). Use either builders or categories, but not
both.

categories

(list of strings). A list of category names to serve status information for. De-
faults to None (all categories). Use either builders or categories, but not both.

addLogs (boolean). If True, include all build logs as attachments to the messages. These
can be quite large. This can also be set to a list of log names, to send a subset
of the logs. Defaults to False.

addPatch (boolean). If True, include the patch content if a patch was present. Patches
are usually used on a Try server. Defaults to True.

relayhost

(string). The host to which the outbound SMTP connection should be made.
Defaults to ’localhost’

lookup (implementor of IEmailLookup). Object which provides IEmailLookup, which
is responsible for mapping User names (which come from the VC system) into
valid email addresses. If not provided, the notifier will only be able to send mail
to the addresses in the extraRecipients list. Most of the time you can use a sim-
ple Domain instance. As a shortcut, you can pass as string: this will be treated
as if you had provided Domain(str). For example, lookup=’twistedmatrix.com’
will allow mail to be sent to all developers whose SVN usernames match their
twistedmatrix.com account names. See buildbot/status/mail.py for more de-
tails.

messageFormatter

This is a optional function that can be used to generate a custom mail mes-
sage. A messageFormatter function takes the mail mode (mode), builder name
(name), the build status (build), the result code (results), and the Build-
Master status (master_status). It returns a dictionary. The body key gives a
string that is the complete text of the message. The type key is the message

Chapter 7: Status Delivery 116

type (’plain’ or ’html’). The ’html’ type should be used when generating an
HTML message. The subject key is optional, but gives the subject for the
email.

extraHeaders

(dictionary) A dictionary containing key/value pairs of extra headers to add to
sent e-mails. Both the keys and the values may be a WithProperties instance.

As a help to those writing messageFormatter functions, the following table describes
how to get some useful pieces of information from the various status objects:

•Name of the builder that generated this event
name

•Name of the project
master_status.getProjectName()

•MailNotifier mode
mode (one of all, failing, problem, change, passing)

•Builder result as a string
from buildbot.status.builder import Results

result_str = Results[results]

one of ’success’, ’warnings’, ’failure’, ’skipped’, or ’exception’

•URL to build page
master_status.getURLForThing(build)

•URL to buildbot main page.
master_status.getBuildbotURL()

•Build text
build.getText()

•Mapping of property names to values
build.getProperties() (a Properties instance)

•Slave name
build.getSlavename()

•Build reason (from a forced build)
build.getReason()

•List of responsible users
build.getResponsibleUsers()

•Source information (only valid if ss is not None)
ss = build.getSourceStamp()

if ss:

branch = ss.branch

revision = ss.revision

patch = ss.patch

changes = ss.changes # list

A change object has the following useful information:

Chapter 7: Status Delivery 117

who (str) who made this change

revision (str) what VC revision is this change

branch (str) on what branch did this change occur

when (str) when did this change occur

files (list of str) what files were affected in this change

comments (str) comments reguarding the change.

The Change methods asText and asHTML return a list of strings with the above
information formatted.

•Log information
logs = list()

for log in build.getLogs():

log_name = "%s.%s" % (log.getStep().getName(), log.getName())

log_status, dummy = log.getStep().getResults()

log_body = log.getText().splitlines() # Note: can be VERY LARGE

log_url = ’%s/steps/%s/logs/%s’ % (master_status.getURLForThing(build),

log.getStep().getName(),

log.getName())

logs.append((log_name, log_url, log_body, log_status))

7.3 IRC Bot

The buildbot.status.words.IRC status target creates an IRC bot which will attach to
certain channels and be available for status queries. It can also be asked to announce builds
as they occur, or be told to shut up.

from buildbot.status import words

irc = words.IRC("irc.example.org", "botnickname",

channels=["channel1", "channel2"],

password="mysecretpassword",

notify_events={

’exception’: 1,

’successToFailure’: 1,

’failureToSuccess’: 1,

})

c[’status’].append(irc)

Take a look at the docstring for words.IRC for more details on configuring this service.
The password argument, if provided, will be sent to Nickserv to claim the nickname: some
IRC servers will not allow clients to send private messages until they have logged in with a
password.

To use the service, you address messages at the buildbot, either normally (botnickname:
status) or with private messages (/msg botnickname status). The buildbot will respond
in kind.

Some of the commands currently available:

list builders

Emit a list of all configured builders

Chapter 7: Status Delivery 118

status BUILDER

Announce the status of a specific Builder: what it is doing right now.

status all

Announce the status of all Builders

watch BUILDER

If the given Builder is currently running, wait until the Build is finished and
then announce the results.

last BUILDER

Return the results of the last build to run on the given Builder.

join CHANNEL

Join the given IRC channel

leave CHANNEL

Leave the given IRC channel

notify on|off|list EVENT

Report events relating to builds. If the command is issued as a private message,
then the report will be sent back as a private message to the user who issued
the command. Otherwise, the report will be sent to the channel. Available
events to be notified are:

started A build has started

finished A build has finished

success A build finished successfully

failed A build failed

exception

A build generated and exception

xToY The previous build was x, but this one is Y, where x and Y are each
one of success, warnings, failure, exception (except Y is capitalized).
For example: successToFailure will notify if the previous build was
successful, but this one failed

help COMMAND

Describe a command. Use help commands to get a list of known commands.

source Announce the URL of the Buildbot’s home page.

version Announce the version of this Buildbot.

Additionally, the config file may specify default notification options as shown in the
example earlier.

If the allowForce=True option was used, some addtional commands will be available:

force build BUILDER REASON

Tell the given Builder to start a build of the latest code. The user requesting
the build and REASON are recorded in the Build status. The buildbot will
announce the build’s status when it finishes.

Chapter 7: Status Delivery 119

stop build BUILDER REASON

Terminate any running build in the given Builder. REASON will be added
to the build status to explain why it was stopped. You might use this if you
committed a bug, corrected it right away, and don’t want to wait for the first
build (which is destined to fail) to complete before starting the second (hopefully
fixed) build.

7.4 PBListener

import buildbot.status.client

pbl = buildbot.status.client.PBListener(port=int, user=str,

passwd=str)

c[’status’].append(pbl)

This sets up a PB listener on the given TCP port, to which a PB-based status client can
connect and retrieve status information. buildbot statusgui (see Section 8.2.2 [statusgui],
page 121) is an example of such a status client. The port argument can also be a strports
specification string.

7.5 Writing New Status Plugins

TODO: this needs a lot more examples

Each status plugin is an object which provides the twisted.application.service.IService
interface, which creates a tree of Services with the buildmaster at the top [not strictly
true]. The status plugins are all children of an object which implements
buildbot.interfaces.IStatus, the main status object. From this object, the plugin can
retrieve anything it wants about current and past builds. It can also subscribe to hear
about new and upcoming builds.

Status plugins which only react to human queries (like the Waterfall display) never
need to subscribe to anything: they are idle until someone asks a question, then wake up
and extract the information they need to answer it, then they go back to sleep. Plugins
which need to act spontaneously when builds complete (like the MailNotifier plugin) need
to subscribe to hear about new builds.

If the status plugin needs to run network services (like the HTTP server used by the
Waterfall plugin), they can be attached as Service children of the plugin itself, using the
IServiceCollection interface.

Chapter 8: Command-line tool 120

8 Command-line tool

The buildbot command-line tool can be used to start or stop a buildmaster or build-
bot, and to interact with a running buildmaster. Some of its subcommands are intended
for buildmaster admins, while some are for developers who are editing the code that the
buildbot is monitoring.

8.1 Administrator Tools

The following buildbot sub-commands are intended for buildmaster administrators:

create-master

This creates a new directory and populates it with files that allow it to be used as a
buildmaster’s base directory.

buildbot create-master BASEDIR

create-slave

This creates a new directory and populates it with files that let it be used as a buildslave’s
base directory. You must provide several arguments, which are used to create the initial
‘buildbot.tac’ file.

buildbot create-slave BASEDIR MASTERHOST:PORT SLAVENAME PASSWORD

start

This starts a buildmaster or buildslave which was already created in the given base directory.
The daemon is launched in the background, with events logged to a file named ‘twistd.log’.

buildbot start BASEDIR

stop

This terminates the daemon (either buildmaster or buildslave) running in the given direc-
tory.

buildbot stop BASEDIR

sighup

This sends a SIGHUP to the buildmaster running in the given directory, which causes it to
re-read its ‘master.cfg’ file.

buildbot sighup BASEDIR

8.2 Developer Tools

These tools are provided for use by the developers who are working on the code that the
buildbot is monitoring.

Chapter 8: Command-line tool 121

8.2.1 statuslog

buildbot statuslog --master MASTERHOST:PORT

This command starts a simple text-based status client, one which just prints out a new
line each time an event occurs on the buildmaster.

The ‘--master’ option provides the location of the buildbot.status.client.PBListener
status port, used to deliver build information to realtime status clients. The option is
always in the form of a string, with hostname and port number separated by a colon
(HOSTNAME:PORTNUM). Note that this port is not the same as the slaveport (although a
future version may allow the same port number to be used for both purposes). If you get
an error message to the effect of “Failure: twisted.cred.error.UnauthorizedLogin:”, this
may indicate that you are connecting to the slaveport rather than a PBListener port.

The ‘--master’ option can also be provided by the masterstatus name in
‘.buildbot/options’ (see Section 8.4 [.buildbot config directory], page 129).

8.2.2 statusgui

If you have set up a PBListener (see Section 7.4 [PBListener], page 119), you will be
able to monitor your Buildbot using a simple Gtk+ application invoked with the buildbot

statusgui command:

buildbot statusgui --master MASTERHOST:PORT

This command starts a simple Gtk+-based status client, which contains a few boxes for
each Builder that change color as events occur. It uses the same ‘--master’ argument and
masterstatus option as the buildbot statuslog command (see Section 8.2.1 [statuslog],
page 121).

8.2.3 try

This lets a developer to ask the question “What would happen if I committed this patch
right now?”. It runs the unit test suite (across multiple build platforms) on the developer’s
current code, allowing them to make sure they will not break the tree when they finally
commit their changes.

The buildbot try command is meant to be run from within a developer’s local tree, and
starts by figuring out the base revision of that tree (what revision was current the last time
the tree was updated), and a patch that can be applied to that revision of the tree to make
it match the developer’s copy. This (revision, patch) pair is then sent to the buildmaster,
which runs a build with that SourceStamp. If you want, the tool will emit status messages
as the builds run, and will not terminate until the first failure has been detected (or the
last success).

There is an alternate form which accepts a pre-made patch file (typically the output of
a command like ’svn diff’). This “–diff” form does not require a local tree to run from. See
See Section 8.2.3.1 [try –diff], page 126.

For this command to work, several pieces must be in place:

TryScheduler

The buildmaster must have a scheduler.Try instance in the config file’s c[’schedulers’]
list. This lets the administrator control who may initiate these “trial” builds, which branches
are eligible for trial builds, and which Builders should be used for them.

Chapter 8: Command-line tool 122

The TryScheduler has various means to accept build requests: all of them enforce more
security than the usual buildmaster ports do. Any source code being built can be used to
compromise the buildslave accounts, but in general that code must be checked out from the
VC repository first, so only people with commit privileges can get control of the buildslaves.
The usual force-build control channels can waste buildslave time but do not allow arbitrary
commands to be executed by people who don’t have those commit privileges. However,
the source code patch that is provided with the trial build does not have to go through
the VC system first, so it is important to make sure these builds cannot be abused by a
non-committer to acquire as much control over the buildslaves as a committer has. Ideally,
only developers who have commit access to the VC repository would be able to start trial
builds, but unfortunately the buildmaster does not, in general, have access to VC system’s
user list.

As a result, the TryScheduler requires a bit more configuration. There are currently
two ways to set this up:

jobdir (ssh)
This approach creates a command queue directory, called the “jobdir”, in the
buildmaster’s working directory. The buildmaster admin sets the ownership
and permissions of this directory to only grant write access to the desired set
of developers, all of whom must have accounts on the machine. The buildbot

try command creates a special file containing the source stamp information
and drops it in the jobdir, just like a standard maildir. When the buildmaster
notices the new file, it unpacks the information inside and starts the builds.

The config file entries used by ’buildbot try’ either specify a local queuedir (for
which write and mv are used) or a remote one (using scp and ssh).

The advantage of this scheme is that it is quite secure, the disadvantage is that
it requires fiddling outside the buildmaster config (to set the permissions on
the jobdir correctly). If the buildmaster machine happens to also house the VC
repository, then it can be fairly easy to keep the VC userlist in sync with the
trial-build userlist. If they are on different machines, this will be much more
of a hassle. It may also involve granting developer accounts on a machine that
would not otherwise require them.

To implement this, the buildslave invokes ’ssh -l username host buildbot try-
server ARGS’, passing the patch contents over stdin. The arguments must
include the inlet directory and the revision information.

user+password (PB)
In this approach, each developer gets a username/password pair, which are all
listed in the buildmaster’s configuration file. When the developer runs buildbot
try, their machine connects to the buildmaster via PB and authenticates them-
selves using that username and password, then sends a PB command to start
the trial build.

The advantage of this scheme is that the entire configuration is performed inside
the buildmaster’s config file. The disadvantages are that it is less secure (while
the “cred” authentication system does not expose the password in plaintext
over the wire, it does not offer most of the other security properties that SSH

Chapter 8: Command-line tool 123

does). In addition, the buildmaster admin is responsible for maintaining the
username/password list, adding and deleting entries as developers come and go.

For example, to set up the “jobdir” style of trial build, using a command queue
directory of ‘MASTERDIR/jobdir’ (and assuming that all your project developers
were members of the developers unix group), you would first create that directory
(with mkdir MASTERDIR/jobdir MASTERDIR/jobdir/new MASTERDIR/jobdir/cur

MASTERDIR/jobdir/tmp; chgrp developers MASTERDIR/jobdir MASTERDIR/jobdir/*;

chmod g+rwx,o-rwx MASTERDIR/jobdir MASTERDIR/jobdir/*), and then use the following
scheduler in the buildmaster’s config file:

from buildbot.scheduler import Try_Jobdir

s = Try_Jobdir("try1", ["full-linux", "full-netbsd", "full-OSX"],

jobdir="jobdir")

c[’schedulers’] = [s]

Note that you must create the jobdir before telling the buildmaster to use this configura-
tion, otherwise you will get an error. Also remember that the buildmaster must be able to
read and write to the jobdir as well. Be sure to watch the ‘twistd.log’ file (see Section 2.7
[Logfiles], page 14) as you start using the jobdir, to make sure the buildmaster is happy
with it.

To use the username/password form of authentication, create a Try_Userpass instance
instead. It takes the same builderNames argument as the Try_Jobdir form, but accepts
an addtional port argument (to specify the TCP port to listen on) and a userpass list of
username/password pairs to accept. Remember to use good passwords for this: the security
of the buildslave accounts depends upon it:

from buildbot.scheduler import Try_Userpass

s = Try_Userpass("try2", ["full-linux", "full-netbsd", "full-OSX"],

port=8031, userpass=[("alice","pw1"), ("bob", "pw2")])

c[’schedulers’] = [s]

Like most places in the buildbot, the port argument takes a strports specification. See
twisted.application.strports for details.

locating the master

The try command needs to be told how to connect to the TryScheduler, and must
know which of the authentication approaches described above is in use by the buildmaster.
You specify the approach by using ‘--connect=ssh’ or ‘--connect=pb’ (or try_connect =

’ssh’ or try_connect = ’pb’ in ‘.buildbot/options’).

For the PB approach, the command must be given a ‘--master’ argument (in the form
HOST:PORT) that points to TCP port that you picked in the Try_Userpass scheduler. It
also takes a ‘--username’ and ‘--passwd’ pair of arguments that match one of the entries
in the buildmaster’s userpass list. These arguments can also be provided as try_master,
try_username, and try_password entries in the ‘.buildbot/options’ file.

For the SSH approach, the command must be given ‘--tryhost’, ‘--username’, and
optionally ‘--password’ (TODO: really?) to get to the buildmaster host. It must also be
given ‘--trydir’, which points to the inlet directory configured above. The trydir can be
relative to the user’s home directory, but most of the time you will use an explicit path like

Chapter 8: Command-line tool 124

‘~buildbot/project/trydir’. These arguments can be provided in ‘.buildbot/options’
as try_host, try_username, try_password, and try_dir.

In addition, the SSH approach needs to connect to a PBListener status port, so it can
retrieve and report the results of the build (the PB approach uses the existing connection
to retrieve status information, so this step is not necessary). This requires a ‘--master’
argument, or a masterstatus entry in ‘.buildbot/options’, in the form of a HOST-
NAME:PORT string.

choosing the Builders

A trial build is performed on multiple Builders at the same time, and the developer gets
to choose which Builders are used (limited to a set selected by the buildmaster admin with
the TryScheduler’s builderNames= argument). The set you choose will depend upon what
your goals are: if you are concerned about cross-platform compatibility, you should use
multiple Builders, one from each platform of interest. You might use just one builder if that
platform has libraries or other facilities that allow better test coverage than what you can
accomplish on your own machine, or faster test runs.

The set of Builders to use can be specified with multiple ‘--builder’ arguments
on the command line. It can also be specified with a single try_builders option in
‘.buildbot/options’ that uses a list of strings to specify all the Builder names:

try_builders = ["full-OSX", "full-win32", "full-linux"]

specifying the VC system

The try command also needs to know how to take the developer’s current tree and extract
the (revision, patch) source-stamp pair. Each VC system uses a different process, so you
start by telling the try command which VC system you are using, with an argument like
‘--vc=cvs’ or ‘--vc=tla’. This can also be provided as try_vc in ‘.buildbot/options’.

The following names are recognized: cvs svn baz tla hg darcs

finding the top of the tree

Some VC systems (notably CVS and SVN) track each directory more-or-less independently,
which means the try command needs to move up to the top of the project tree before it
will be able to construct a proper full-tree patch. To accomplish this, the try command
will crawl up through the parent directories until it finds a marker file. The default name
for this marker file is ‘.buildbot-top’, so when you are using CVS or SVN you should
touch .buildbot-top from the top of your tree before running buildbot try. Alterna-
tively, you can use a filename like ‘ChangeLog’ or ‘README’, since many projects put one
of these files in their top-most directory (and nowhere else). To set this filename, use
‘--try-topfile=ChangeLog’, or set it in the options file with try_topfile = ’ChangeLog’.

You can also manually set the top of the tree with ‘--try-topdir=~/trees/mytree’, or
try_topdir = ’~/trees/mytree’. If you use try_topdir, in a ‘.buildbot/options’ file,
you will need a separate options file for each tree you use, so it may be more convenient to
use the try_topfile approach instead.

Chapter 8: Command-line tool 125

Other VC systems which work on full projects instead of individual directories (tla,
baz, darcs, monotone, mercurial, git) do not require try to know the top directory, so the
‘--try-topfile’ and ‘--try-topdir’ arguments will be ignored.

If the try command cannot find the top directory, it will abort with an error message.

determining the branch name

Some VC systems record the branch information in a way that “try” can locate it, in
particular Arch (both tla and baz). For the others, if you are using something other than
the default branch, you will have to tell the buildbot which branch your tree is using.
You can do this with either the ‘--branch’ argument, or a ‘try_branch’ entry in the
‘.buildbot/options’ file.

determining the revision and patch

Each VC system has a separate approach for determining the tree’s base revision and
computing a patch.

CVS

try pretends that the tree is up to date. It converts the current time into a -D

time specification, uses it as the base revision, and computes the diff between
the upstream tree as of that point in time versus the current contents. This
works, more or less, but requires that the local clock be in reasonably good sync
with the repository.

SVN try does a svn status -u to find the latest repository revision number (emitted
on the last line in the “Status against revision: NN” message). It then performs
an svn diff -rNN to find out how your tree differs from the repository version,
and sends the resulting patch to the buildmaster. If your tree is not up to
date, this will result in the “try” tree being created with the latest revision,
then backwards patches applied to bring it “back” to the version you actually
checked out (plus your actual code changes), but this will still result in the
correct tree being used for the build.

baz try does a baz tree-id to determine the fully-qualified version and patch iden-
tifier for the tree (ARCHIVE/VERSION–patch-NN), and uses the VERSION–
patch-NN component as the base revision. It then does a baz diff to obtain
the patch.

tla try does a tla tree-version to get the fully-qualified version identifier
(ARCHIVE/VERSION), then takes the first line of tla logs --reverse to
figure out the base revision. Then it does tla changes --diffs to obtain the
patch.

Darcs darcs changes --context emits a text file that contains a list of all patches
back to and including the last tag was made. This text file (plus the location
of a repository that contains all these patches) is sufficient to re-create the
tree. Therefore the contents of this “context” file are the revision stamp for a
Darcs-controlled source tree.

Chapter 8: Command-line tool 126

So try does a darcs changes --context to determine what your tree’s base
revision is, and then does a darcs diff -u to compute the patch relative to
that revision.

Mercurial

hg identify emits a short revision ID (basically a truncated SHA1 hash of the
current revision’s contents), which is used as the base revision. hg diff then
provides the patch relative to that revision. For try to work, your working
directory must only have patches that are available from the same remotely-
available repository that the build process’ source.Mercurial will use.

Git git branch -v lists all the branches available in the local repository along with
the revision ID it points to and a short summary of the last commit. The line
containing the currently checked out branch begins with ’* ’ (star and space)
while all the others start with ’ ’ (two spaces). try scans for this line and
extracts the branch name and revision from it. Then it generates a diff against
the base revision.

Monotone mtn automate get_base_revisions_id emits the base revision that we use.
mtn diff then provides the patch relative to that revision. For try to work,
your working directory must only have patches that are available from the
same remotely-available repository that the build process’ source.Mercurial
will use.

waiting for results

If you provide the ‘--wait’ option (or try_wait = True in ‘.buildbot/options’), the
buildbot try command will wait until your changes have either been proven good or bad
before exiting. Unless you use the ‘--quiet’ option (or try_quiet=True), it will emit a
progress message every 60 seconds until the builds have completed.

8.2.3.1 try –diff

Sometimes you might have a patch from someone else that you want to submit to the
buildbot. For example, a user may have created a patch to fix some specific bug and sent
it to you by email. You’ve inspected the patch and suspect that it might do the job (and
have at least confirmed that it doesn’t do anything evil). Now you want to test it out.

One approach would be to check out a new local tree, apply the patch, run your local
tests, then use “buildbot try” to run the tests on other platforms. An alternate approach
is to use the buildbot try --diff form to have the buildbot test the patch without using
a local tree.

This form takes a ‘--diff’ argument which points to a file that contains the patch you
want to apply. By default this patch will be applied to the TRUNK revision, but if you give
the optional ‘--baserev’ argument, a tree of the given revision will be used as a starting
point instead of TRUNK.

You can also use buildbot try --diff=- to read the patch from stdin.

Each patch has a “patchlevel” associated with it. This indicates the number of slashes
(and preceding pathnames) that should be stripped before applying the diff. This exactly

Chapter 8: Command-line tool 127

corresponds to the ‘-p’ or ‘--strip’ argument to the patch utility. By default buildbot

try --diff uses a patchlevel of 0, but you can override this with the ‘-p’ argument.

When you use ‘--diff’, you do not need to use any of the other options that relate to
a local tree, specifically ‘--vc’, ‘--try-topfile’, or ‘--try-topdir’. These options will be
ignored. Of course you must still specify how to get to the buildmaster (with ‘--connect’,
‘--tryhost’, etc).

8.3 Other Tools

These tools are generally used by buildmaster administrators.

8.3.1 sendchange

This command is used to tell the buildmaster about source changes. It is intended to be
used from within a commit script, installed on the VC server. It requires that you have a
PBChangeSource (see Section 5.5 [PBChangeSource], page 56) running in the buildmaster
(by being set in c[’change_source’]).

buildbot sendchange --master MASTERHOST:PORT --username USER FILENAMES..

The master and username arguments can also be given in the options file (see Section 8.4
[.buildbot config directory], page 129). There are other (optional) arguments which can
influence the Change that gets submitted:

--branch (or option branch) This provides the (string) branch specifier. If omitted, it
defaults to None, indicating the “default branch”. All files included in this
Change must be on the same branch.

--category

(or option category) This provides the (string) category specifier. If omitted,
it defaults to None, indicating “no category”. The category property is used
by Schedulers to filter what changes they listen to.

--revision_number

This provides a (numeric) revision number for the change, used for VC systems
that use numeric transaction numbers (like Subversion).

--revision

This provides a (string) revision specifier, for VC systems that use strings (Arch
would use something like patch-42 etc).

--revision_file

This provides a filename which will be opened and the contents used as the
revision specifier. This is specifically for Darcs, which uses the output of darcs
changes --context as a revision specifier. This context file can be a couple of
kilobytes long, spanning a couple lines per patch, and would be a hassle to pass
as a command-line argument.

--property

This parameter is used to set a property on the Change generated by send-
change. Properties are specified as a name:value pair, separated by a colon.
You may specify many properties by passing this parameter multiple times.

Chapter 8: Command-line tool 128

--comments

This provides the change comments as a single argument. You may want to use
‘--logfile’ instead.

--logfile

This instructs the tool to read the change comments from the given file. If you
use - as the filename, the tool will read the change comments from stdin.

8.3.2 debugclient

buildbot debugclient --master MASTERHOST:PORT --passwd DEBUGPW

This launches a small Gtk+/Glade-based debug tool, connecting to the buildmaster’s
“debug port”. This debug port shares the same port number as the slaveport (see Section 4.8
[Setting the slaveport], page 39), but the debugPort is only enabled if you set a debug
password in the buildmaster’s config file (see Section 4.15 [Debug options], page 48). The
‘--passwd’ option must match the c[’debugPassword’] value.

‘--master’ can also be provided in ‘.debug/options’ by the master key. ‘--passwd’
can be provided by the debugPassword key. See Section 8.4 [.buildbot config directory],
page 129.

The Connect button must be pressed before any of the other buttons will be active. This
establishes the connection to the buildmaster. The other sections of the tool are as follows:

Reload .cfg

Forces the buildmaster to reload its ‘master.cfg’ file. This is equivalent to
sending a SIGHUP to the buildmaster, but can be done remotely through the
debug port. Note that it is a good idea to be watching the buildmaster’s
‘twistd.log’ as you reload the config file, as any errors which are detected in
the config file will be announced there.

Rebuild .py

(not yet implemented). The idea here is to use Twisted’s “rebuild” facilities to
replace the buildmaster’s running code with a new version. Even if this worked,
it would only be used by buildbot developers.

poke IRC This locates a words.IRC status target and causes it to emit a message on
all the channels to which it is currently connected. This was used to debug a
problem in which the buildmaster lost the connection to the IRC server and
did not attempt to reconnect.

Commit This allows you to inject a Change, just as if a real one had been delivered by
whatever VC hook you are using. You can set the name of the committed file
and the name of the user who is doing the commit. Optionally, you can also
set a revision for the change. If the revision you provide looks like a number,
it will be sent as an integer, otherwise it will be sent as a string.

Force Build

This lets you force a Builder (selected by name) to start a build of the current
source tree.

Chapter 8: Command-line tool 129

Currently

(obsolete). This was used to manually set the status of the given Builder,
but the status-assignment code was changed in an incompatible way and these
buttons are no longer meaningful.

8.4 .buildbot config directory

Many of the buildbot tools must be told how to contact the buildmaster that they interact
with. This specification can be provided as a command-line argument, but most of the
time it will be easier to set them in an “options” file. The buildbot command will look
for a special directory named ‘.buildbot’, starting from the current directory (where the
command was run) and crawling upwards, eventually looking in the user’s home directory.
It will look for a file named ‘options’ in this directory, and will evaluate it as a python
script, looking for certain names to be set. You can just put simple name = ’value’ pairs
in this file to set the options.

For a description of the names used in this file, please see the documentation for the
individual buildbot sub-commands. The following is a brief sample of what this file’s
contents could be.

for status-reading tools

masterstatus = ’buildbot.example.org:12345’

for ’sendchange’ or the debug port

master = ’buildbot.example.org:18990’

debugPassword = ’eiv7Po’

Note carefully that the names in the options file usually do not match the command-line
option name.

masterstatus

Equivalent to --master for Section 8.2.1 [statuslog], page 121 and Section 8.2.2
[statusgui], page 121, this gives the location of the client.PBListener status
port.

master Equivalent to --master for Section 8.3.2 [debugclient], page 128 and Sec-
tion 8.3.1 [sendchange], page 127. This option is used for two purposes. It
is the location of the debugPort for debugclient and the location of the
pb.PBChangeSource for sendchange. Generally these are the same port.

debugPassword

Equivalent to --passwd for Section 8.3.2 [debugclient], page 128.

XXX Must match the value of c[’debugPassword’], used to protect the debug
port, for the debugclient command.

username Equivalent to --username for the Section 8.3.1 [sendchange], page 127 com-
mand.

branch Equivalent to --branch for the Section 8.3.1 [sendchange], page 127 command.

category Equivalent to --category for the Section 8.3.1 [sendchange], page 127 com-
mand.

Chapter 8: Command-line tool 130

try_connect

Equivalent to --connect, this specifies how the Section 8.2.3 [try], page 121
command should deliver its request to the buildmaster. The currently accepted
values are “ssh” and “pb”.

try_builders

Equivalent to --builders, specifies which builders should be used for the Sec-
tion 8.2.3 [try], page 121 build.

try_vc Equivalent to --vc for Section 8.2.3 [try], page 121, this specifies the version
control system being used.

try_branch

Equivlanent to --branch, this indicates that the current tree is on a non-trunk
branch.

try_topdir

try_topfile

Use try_topdir, equivalent to --try-topdir, to explicitly indicate the top of
your working tree, or try_topfile, equivalent to --try-topfile to name a
file that will only be found in that top-most directory.

try_host

try_username

try_dir When try_connect is “ssh”, the command will use try_host for --tryhost,
try_username for --username, and try_dir for --trydir. Apologies for the
confusing presence and absence of ’try’.

try_username

try_password

try_master

Similarly, when try_connect is “pb”, the command will pay attention to try_

username for --username, try_password for --passwd, and try_master for
--master.

try_wait

masterstatus

try_wait and masterstatus (equivalent to --wait and master, respectively)
are used to ask the Section 8.2.3 [try], page 121 command to wait for the
requested build to complete.

Chapter 9: Resources 131

9 Resources

The Buildbot home page is http://buildbot.net/.

For configuration questions and general discussion, please use the buildbot-

devel mailing list. The subscription instructions and archives are available at
http://lists.sourceforge.net/lists/listinfo/buildbot-devel

The #buildbot channel on Freenode’s IRC servers hosts development discussion, and
often folks are available to answer questions there, as well.

Developer’s Appendix 132

Developer’s Appendix

This appendix contains random notes about the implementation of the Buildbot, and is
likely to only be of use to people intending to extend the Buildbot’s internals.

The buildmaster consists of a tree of Service objects, which is shaped as follows:

BuildMaster

ChangeMaster (in .change_svc)

[IChangeSource instances]

[IScheduler instances] (in .schedulers)

BotMaster (in .botmaster)

[IBuildSlave instances]

[IStatusTarget instances] (in .statusTargets)

The BotMaster has a collection of Builder objects as values of its .builders dictionary.

Index of Useful Classes 133

Index of Useful Classes

This is a list of all user-visible classes. There are the ones that are useful in ‘master.cfg’,
the buildmaster’s configuration file. Classes that are not listed here are generally internal
things that admins are unlikely to have much use for.

Change Sources

buildbot.changes.bonsaipoller.BonsaiPoller

. 58
buildbot.changes.freshcvs.FreshCVSSource

. 52
buildbot.changes.mail.BonsaiMaildirSource

. 56
buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

. 56

buildbot.changes.mail.FCMaildirSource 55
buildbot.changes.mail.SVNCommitEmailMaildirSource

. 56
buildbot.changes.mail.SyncmailMaildirSource

. 55
buildbot.changes.p4poller.P4Source 57
buildbot.changes.pb.PBChangeSource 56
buildbot.changes.svnpoller.SVNPoller 58

Schedulers and Locks

buildbot.locks.LockAccess 96
buildbot.locks.MasterLock 96
buildbot.locks.SlaveLock 96
buildbot.scheduler.AnyBranchScheduler 34
buildbot.scheduler.Dependent 34
buildbot.scheduler.Nightly 35

buildbot.scheduler.Periodic 35

buildbot.scheduler.Scheduler 33

buildbot.scheduler.Triggerable 37

buildbot.scheduler.Try_Jobdir 37, 121

buildbot.scheduler.Try_Userpass 37, 121

Build Factories

buildbot.process.factory.BasicBuildFactory

. 99
buildbot.process.factory.BasicSVN 99
buildbot.process.factory.BuildFactory 99
buildbot.process.factory.CPAN 102

buildbot.process.factory.Distutils 103
buildbot.process.factory.GNUAutoconf 101
buildbot.process.factory.QuickBuildFactory

. 101
buildbot.process.factory.Trial 103

Build Steps

buildbot.process.subunitlogger.SubunitShellCommand

. 84
buildbot.steps.maxq.MaxQ 133
buildbot.steps.python.BuildEPYDoc 84
buildbot.steps.python.PyFlakes 85
buildbot.steps.python.PyLint 85
buildbot.steps.python_twisted.BuildDebs

. 103
buildbot.steps.python_twisted.HLint 103
buildbot.steps.python_twisted.ProcessDocs

. 103
buildbot.steps.python_twisted.RemovePYCs

. 103
buildbot.steps.python_twisted.Trial 103
buildbot.steps.shell.Compile 81
buildbot.steps.shell.Configure 81
buildbot.steps.shell.PerlModuleTest 82

buildbot.steps.shell.SetProperty 84
buildbot.steps.shell.ShellCommand 78
buildbot.steps.shell.Test 82
buildbot.steps.shell.TreeSize 82
buildbot.steps.source.Arch 76
buildbot.steps.source.Bazaar 76
buildbot.steps.source.Bzr 76
buildbot.steps.source.CVS 72
buildbot.steps.source.Darcs 75
buildbot.steps.source.Git 77, 133
buildbot.steps.source.Mercurial 75
buildbot.steps.source.Monotone 78
buildbot.steps.source.P4 77
buildbot.steps.source.SVN 72
buildbot.steps.transfer.DirectoryUpload . . 85
buildbot.steps.transfer.FileDownload 85
buildbot.steps.transfer.FileUpload 85

Index of Useful Classes 134

Status Targets

buildbot.status.client.PBListener 119
buildbot.status.html.Waterfall 111
buildbot.status.mail.MailNotifier 112

buildbot.status.web.baseweb.WebStatus . . . 105

buildbot.status.words.IRC 117

Index of master.cfg keys 135

Index of master.cfg keys

This is a list of all of the significant keys in master.cfg . Recall that master.cfg is effec-
tively a small python program with exactly one responsibility: create a dictionary named
BuildmasterConfig. The keys of this dictionary are listed here. The beginning of the
master.cfg file typically starts with something like:

BuildmasterConfig = c = {}

Therefore a config key of change_sourcewill usually appear in master.cfg as c[’change_
source’].

c[’buildbotURL’] . 31
c[’buildCacheSize’] . 48
c[’builders’] . 45
c[’buildHorizon’]. 48
c[’change_source’] . 32
c[’changeHorizon’] . 32
c[’debugPassword’] . 48
c[’eventHorizon’]. 48
c[’logCompressionLimit’] 31
c[’logCompressionMethod’] 31
c[’logHorizon’] . 48
c[’logMaxSize’] . 31

c[’logMaxTailSize’] . 31
c[’manhole’] . 48
c[’mergeRequests’] . 38
c[’prioritizeBuilders’] . 39
c[’projectName’] . 31
c[’projectURL’] . 31
c[’properties’] . 45
c[’schedulers’] . 32
c[’slavePortnum’]. 39
c[’slaves’] . 39
c[’sources’] . 32
c[’status’] . 47

Index 136

Index

A
addURL . 95
Arch Checkout . 76

B
Bazaar Checkout . 76
Builder . 24
BuildRequest . 24
BuildSet . 23
BuildStep URLs . 95
Bzr Checkout . 76

C
Configuration . 29
CVS Checkout . 72

D
Darcs Checkout . 75
Dependencies . 34
Dependent . 34

E
email . 112

F
File Transfer . 85

G
Git Checkout . 77

I
installation . 8
introduction . 1
IRC . 117

L
links . 95
locks . 96
logfiles . 14
LogLineObserver . 91
LogObserver . 91

M
mail . 112
Mercurial Checkout . 75
Monotone Checkout . 78

P
PBListener . 119
Perforce Update . 77
Philosophy of operation . 1
Properties . 27, 32, 40, 45, 68

S
Scheduler . 22
statusgui . 121
SVN Checkout . 72

T
treeStableTimer . 101
Triggers . 37

U
Users . 25

V
Version Control . 17

W
Waterfall . 111
WebStatus . 105
WithProperties . 68

